Cloud based neuroimaging analysis for identifying traumatic braininjuries and related changes
基于云的神经影像分析,用于识别创伤性脑损伤和相关变化
基本信息
- 批准号:10827676
- 负责人:
- 金额:$ 26.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdministrative SupplementAlgorithmsAwardBrainBrain imagingClassificationClinicalClinical assessmentsCloud ComputingCloud ServiceCommunitiesDataData CollectionData SetDatabasesDetectionDevelopmentEvaluationForensic MedicineFunctional Magnetic Resonance ImagingFundingGeneral PopulationGoalsGrantHourHumanImageImpaired cognitionImprisonmentIncidenceIndividualLongitudinal StudiesMachine LearningMagnetic Resonance ImagingMeasuresMemoryMethodologyModalityMotionNational Institute of Neurological Disorders and StrokeNeurocognitiveNeuropsychologyOutcomePathologyPerformancePopulationPopulation HeterogeneityProcessProtocols documentationRecording of previous eventsRunningSamplingSiteSystemTestingTimeTraumatic Brain InjuryUnited States National Institutes of HealthValidationWomanbrain basedbrain volumeclassification algorithmcloud basedcomorbiditycomputational platformcomputerized data processingcomputing resourcescostdata analysis pipelinefeasibility testingfeature selectionhigh dimensionalityhigh riskhigh risk menhigh risk populationimaging modalityimprovedmenmild traumatic brain injurymultimodal neuroimagingneuralneuroimagingneuroimaging markerparent grantpediatric traumapredictive modelingprocessing speedprototypeservice providerssubstance usetooltrait
项目摘要
Project Summary (30 lines max)
This proposal outlines plans to evaluate the performance and utility of cloud-based data processing for
computationally demanding analysis of MRI-based brain imaging data. This administrative supplement would
build on the aims of a recently awarded R01 which develops classification algorithms for identifying and tracking
progressive pathology associated with mild traumatic brain injury (mTBI) in a population of high-risk individuals.
Over the last decade, our team has been continuously funded by NIH to collect detailed clinical and neuroimaging
protocols from over 4000 high-risk men and women. Our extant data include multimodal neuroimaging protocols
(sMRI, fMRI, DTI), thorough clinical assessments, neuropsychological evaluations, and histories of TBI. The
aims of the current project are to generalize existing classification algorithms for mTBI from community samples
to high-risk forensic samples and to improve on an objective neuroimaging-based measure of cognitive decline.
On traditional platforms, these neuroimaging-based classification tools involve hundreds of thousands of
potential features and require running times of several weeks, even for relatively small numbers of subjects.
Given the computational complexity of the analyses required for this project, cloud-based computing platforms
could be highly advantageous in terms of efficiency. We propose, first, to containerize our customized
neuroimaging pipelines for pre-processing, followed by implementation of our current locally implemented
classification algorithms. A cloud-based solution will allow us to explore several algorithmic approaches towards
feature selection and union in a shorter time frame than using a local server-based solution. In order to test the
feasibility and advantages of cloud-based processing, we will build data processing pipelines and validate them
using existing data. Specifically, we would like to prototype algorithmic approaches towards detecting trait related
changes in neural connectivity and test these using extant data collected under NIH support and from publicly
available neuroimaging databases (e.g. FITBIR). Indeed, one of the aims of our R01 award is to test the
generalizability of our algorithms to data in FITBIR (readily available). This testing could begin as soon as
supplement was received. The cloud-based platform versus local-server-based processing will be evaluated in
terms of data processing speed and costs (including human working hours). These objective measures will give
us a clear picture of the value of implementing cloud-based processing on a larger scale, including applications
for the longitudinal aims of the current grant.
项目摘要(最多 30 行)
该提案概述了评估基于云的数据处理的性能和实用性的计划
基于 MRI 的脑成像数据的计算要求较高的分析。这项行政补充将
以最近获奖的 R01 的目标为基础,该项目开发用于识别和跟踪的分类算法
高危人群中与轻度创伤性脑损伤(mTBI)相关的进行性病理学。
在过去的十年中,我们的团队不断得到 NIH 的资助,收集详细的临床和神经影像资料
来自 4000 多名高危男性和女性的协议。我们现有的数据包括多模式神经影像协议
(sMRI、fMRI、DTI)、全面的临床评估、神经心理学评估和 TBI 病史。这
当前项目的目标是从社区样本中推广现有的 mTBI 分类算法
高风险法医样本,并改进基于神经影像的客观认知能力下降测量。
在传统平台上,这些基于神经影像的分类工具涉及数十万个
潜在的功能,并且需要几周的运行时间,即使对于相对较少的受试者也是如此。
考虑到该项目所需分析的计算复杂性,基于云的计算平台
在效率方面可能具有很大优势。我们建议,首先,将我们定制的容器化
用于预处理的神经成像管道,然后实施我们当前本地实施的
分类算法。基于云的解决方案将使我们能够探索几种算法方法
与使用基于本地服务器的解决方案相比,特征选择和合并的时间更短。为了测试
基于云处理的可行性和优势,我们将构建数据处理管道并对其进行验证
使用现有数据。具体来说,我们希望建立算法方法原型来检测特征相关的
神经连接的变化,并使用在 NIH 支持下和公开收集的现有数据来测试这些变化
可用的神经影像数据库(例如 FITBIR)。事实上,我们 R01 奖的目的之一就是测试
我们的算法对 FITBIR 中数据的通用性(随时可用)。该测试可能会尽快开始
补充已收到。基于云的平台与基于本地服务器的处理将在
数据处理速度和成本(包括人工工作时间)。这些客观措施将给
我们清楚地了解大规模实施基于云的处理(包括应用程序)的价值
当前赠款的纵向目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENT A KIEHL其他文献
KENT A KIEHL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENT A KIEHL', 18)}}的其他基金
Neurocognitive Abnormalities in Stimulant Abuse among High-Risk Women
高危女性滥用兴奋剂导致的神经认知异常
- 批准号:
10669260 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Neurocognitive Abnormalities in Stimulant Abuse among High-Risk Women
高危女性滥用兴奋剂导致的神经认知异常
- 批准号:
10522796 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
A longitudinal study of traumatic brain injury in a high-risk population
高危人群创伤性脑损伤的纵向研究
- 批准号:
10531141 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
A longitudinal study of traumatic brain injury in a high-risk population
高危人群创伤性脑损伤的纵向研究
- 批准号:
10676267 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Mindfulness for Alcohol Abusing Offenders: Mechanisms and Outcomes
酗酒者的正念:机制和结果
- 批准号:
10668853 - 财政年份:2018
- 资助金额:
$ 26.98万 - 项目类别:
Mindfulness for Alcohol Abusing Offenders: Mechanisms and Outcomes
酗酒者的正念:机制和结果
- 批准号:
10398036 - 财政年份:2018
- 资助金额:
$ 26.98万 - 项目类别:
Mindfulness for Alcohol Abusing Offenders: Mechanisms and Outcomes
酗酒者的正念:机制和结果
- 批准号:
9915815 - 财政年份:2018
- 资助金额:
$ 26.98万 - 项目类别:
相似海外基金
Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
- 批准号:
10859277 - 财政年份:2023
- 资助金额:
$ 26.98万 - 项目类别:
Implementing best practices in software design for Network Level Analysis
实施网络级分析软件设计的最佳实践
- 批准号:
10839638 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
- 批准号:
10415626 - 财政年份:2021
- 资助金额:
$ 26.98万 - 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
- 批准号:
10406064 - 财政年份:2021
- 资助金额:
$ 26.98万 - 项目类别:
Application of Implementation Science approaches to assess the effectiveness of Task-shifted WHO-PEN to address cardio metabolic complications in people living with HIV in Zambia
应用实施科学方法来评估任务转移的 WHO-PEN 解决赞比亚艾滋病毒感染者心脏代谢并发症的有效性
- 批准号:
10817964 - 财政年份:2020
- 资助金额:
$ 26.98万 - 项目类别: