Cloud based neuroimaging analysis for identifying traumatic braininjuries and related changes
基于云的神经影像分析,用于识别创伤性脑损伤和相关变化
基本信息
- 批准号:10827676
- 负责人:
- 金额:$ 26.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdministrative SupplementAlgorithmsAwardBrainBrain imagingClassificationClinicalClinical assessmentsCloud ComputingCloud ServiceCommunitiesDataData CollectionData SetDatabasesDetectionDevelopmentEvaluationForensic MedicineFunctional Magnetic Resonance ImagingFundingGeneral PopulationGoalsGrantHourHumanImageImpaired cognitionImprisonmentIncidenceIndividualLongitudinal StudiesMachine LearningMagnetic Resonance ImagingMeasuresMemoryMethodologyModalityMotionNational Institute of Neurological Disorders and StrokeNeurocognitiveNeuropsychologyOutcomePathologyPerformancePopulationPopulation HeterogeneityProcessProtocols documentationRecording of previous eventsRunningSamplingSiteSystemTestingTimeTraumatic Brain InjuryUnited States National Institutes of HealthValidationWomanbrain basedbrain volumeclassification algorithmcloud basedcomorbiditycomputational platformcomputerized data processingcomputing resourcescostdata analysis pipelinefeasibility testingfeature selectionhigh dimensionalityhigh riskhigh risk menhigh risk populationimaging modalityimprovedmenmild traumatic brain injurymultimodal neuroimagingneuralneuroimagingneuroimaging markerparent grantpediatric traumapredictive modelingprocessing speedprototypeservice providerssubstance usetooltrait
项目摘要
Project Summary (30 lines max)
This proposal outlines plans to evaluate the performance and utility of cloud-based data processing for
computationally demanding analysis of MRI-based brain imaging data. This administrative supplement would
build on the aims of a recently awarded R01 which develops classification algorithms for identifying and tracking
progressive pathology associated with mild traumatic brain injury (mTBI) in a population of high-risk individuals.
Over the last decade, our team has been continuously funded by NIH to collect detailed clinical and neuroimaging
protocols from over 4000 high-risk men and women. Our extant data include multimodal neuroimaging protocols
(sMRI, fMRI, DTI), thorough clinical assessments, neuropsychological evaluations, and histories of TBI. The
aims of the current project are to generalize existing classification algorithms for mTBI from community samples
to high-risk forensic samples and to improve on an objective neuroimaging-based measure of cognitive decline.
On traditional platforms, these neuroimaging-based classification tools involve hundreds of thousands of
potential features and require running times of several weeks, even for relatively small numbers of subjects.
Given the computational complexity of the analyses required for this project, cloud-based computing platforms
could be highly advantageous in terms of efficiency. We propose, first, to containerize our customized
neuroimaging pipelines for pre-processing, followed by implementation of our current locally implemented
classification algorithms. A cloud-based solution will allow us to explore several algorithmic approaches towards
feature selection and union in a shorter time frame than using a local server-based solution. In order to test the
feasibility and advantages of cloud-based processing, we will build data processing pipelines and validate them
using existing data. Specifically, we would like to prototype algorithmic approaches towards detecting trait related
changes in neural connectivity and test these using extant data collected under NIH support and from publicly
available neuroimaging databases (e.g. FITBIR). Indeed, one of the aims of our R01 award is to test the
generalizability of our algorithms to data in FITBIR (readily available). This testing could begin as soon as
supplement was received. The cloud-based platform versus local-server-based processing will be evaluated in
terms of data processing speed and costs (including human working hours). These objective measures will give
us a clear picture of the value of implementing cloud-based processing on a larger scale, including applications
for the longitudinal aims of the current grant.
项目摘要(最多30行)
该建议概述了计划评估基于云的数据处理的性能和实用性的计划
基于MRI的大脑成像数据的计算要求分析。这种行政补充将
建立在最近授予的R01的目的的基础上,该R01开发了用于识别和跟踪的分类算法
高风险个体人群中与轻度创伤性脑损伤(MTBI)相关的进行性病理学。
在过去的十年中,我们的团队不断由NIH资助,以收集详细的临床和神经影像学
来自4000多名高风险男女的协议。我们现有的数据包括多模式神经影像学方案
(SMRI,FMRI,DTI),TBI的彻底临床评估,神经心理学评估和历史。这
当前项目的目的是从社区样本中概括MTBI的现有分类算法
高危法医样本,并改善基于基于神经影像学的认知能力下降的度量。
在传统平台上,这些基于神经成像的分类工具涉及数十万个
潜在的功能,需要数周的运行时间,即使是相对较少的受试者。
鉴于该项目所需的分析的计算复杂性,基于云的计算平台
就效率而言可能是有利的。我们首先提出要容纳我们的自定义
神经成像管道进行预处理,然后实施我们当前实施的
分类算法。基于云的解决方案将使我们能够探索几种算法方法
在较短的时间范围内,功能选择和联合比使用基于本地服务器的解决方案。为了测试
基于云的处理的可行性和优势,我们将构建数据处理管道并验证它们
使用现有数据。具体而言,我们想针对检测性状相关的原型算法方法
神经连通性的变化并使用NIH支持下收集的现有数据和公开测试
可用的神经影像数据库(例如FITBIR)。确实,我们R01奖的目的之一是测试
我们算法对FITBIR中数据的概括性(易于使用)。该测试可能会尽快开始
收到了补充。基于云的平台与基于本地服务器的处理将在
数据处理速度和成本(包括人工时间)的条款。这些客观措施将给予
我们清楚地了解了大规模实施基于云的处理的价值,包括应用程序
对于当前赠款的纵向目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENT A KIEHL其他文献
KENT A KIEHL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENT A KIEHL', 18)}}的其他基金
Neurocognitive Abnormalities in Stimulant Abuse among High-Risk Women
高危女性滥用兴奋剂导致的神经认知异常
- 批准号:
10669260 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Neurocognitive Abnormalities in Stimulant Abuse among High-Risk Women
高危女性滥用兴奋剂导致的神经认知异常
- 批准号:
10522796 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
A longitudinal study of traumatic brain injury in a high-risk population
高危人群创伤性脑损伤的纵向研究
- 批准号:
10531141 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
A longitudinal study of traumatic brain injury in a high-risk population
高危人群创伤性脑损伤的纵向研究
- 批准号:
10676267 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Mindfulness for Alcohol Abusing Offenders: Mechanisms and Outcomes
酗酒者的正念:机制和结果
- 批准号:
10668853 - 财政年份:2018
- 资助金额:
$ 26.98万 - 项目类别:
Mindfulness for Alcohol Abusing Offenders: Mechanisms and Outcomes
酗酒者的正念:机制和结果
- 批准号:
10398036 - 财政年份:2018
- 资助金额:
$ 26.98万 - 项目类别:
Mindfulness for Alcohol Abusing Offenders: Mechanisms and Outcomes
酗酒者的正念:机制和结果
- 批准号:
9915815 - 财政年份:2018
- 资助金额:
$ 26.98万 - 项目类别:
相似海外基金
Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
- 批准号:
10859277 - 财政年份:2023
- 资助金额:
$ 26.98万 - 项目类别:
Implementing best practices in software design for Network Level Analysis
实施网络级分析软件设计的最佳实践
- 批准号:
10839638 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
- 批准号:
10415626 - 财政年份:2021
- 资助金额:
$ 26.98万 - 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
- 批准号:
10406064 - 财政年份:2021
- 资助金额:
$ 26.98万 - 项目类别:
Application of Implementation Science approaches to assess the effectiveness of Task-shifted WHO-PEN to address cardio metabolic complications in people living with HIV in Zambia
应用实施科学方法来评估任务转移的 WHO-PEN 解决赞比亚艾滋病毒感染者心脏代谢并发症的有效性
- 批准号:
10817964 - 财政年份:2020
- 资助金额:
$ 26.98万 - 项目类别: