Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
基本信息
- 批准号:10724154
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-03 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnteriorAnxietyAreaBrainCognitiveCommunicationDataDecision MakingDorsalEnvironmentEvolutionFrequenciesFunctional disorderFutureGoalsGrantHabitsHippocampusLearningMapsMeasuresMediatingMental DepressionMethodologyMethodsModelingMood DisordersNeuronsObsessive-Compulsive DisorderPathway interactionsPerformancePost-Traumatic Stress DisordersPrimatesProcessPropertyPsychiatryPsychological reinforcementPsychopathologyResearchRewardsRodentRoleSchizophreniaSignal TransductionStimulusStructureSymptomsSystemTestingTherapeuticTherapeutic InterventionTheta RhythmTimeWorkaddictionelectrical microstimulationenvironmental changeflexibilityhigh dimensionalityimprovedlearning strategymicrostimulationneuralneuromechanismneuropsychiatric disorderresponseskills
项目摘要
Project summary (<30 lines)
Dysfunction of both the hippocampus and the orbitofrontal cortex have been implicated in a wide variety of
neuropsychiatric disorders, including obsessive-compulsive disorder, mood disorders and addiction. However,
their exact contribution remains unclear. A major problem is that most research on hippocampal mechanisms
is derived from rodent work. However, the structure of the hippocampus has undergone dramatic changes
across the course of evolution, particularly in those parts associated with psychopathologies. This necessitates
the use of primate models, but there have been few studies of hippocampus in the primate. The current grant
will investigate the neuronal properties of hippocampus in the primate and determine how it interacts with
orbitofrontal cortex.
The theoretical framework that we will employ is derived from computational psychiatry, with a particular focus
on how the computational processes underlying reinforcement learning might contribute to neuropsychiatric
disease. Our hypothesis is that both hippocampus and orbitofrontal cortex make critical contributions to
model-based reinforcement learning, whereby hippocampus is responsible for constructing the cognitive map
that instantiates the neural representation of the task model, and orbitofrontal cortex is responsible for using
the cognitive map to generate reward predictions that can be used to guide decision-making. To test this
hypothesis, we will use a combination of high-channel count neuronal recordings and electrical
microstimulation.
We will record from single neurons in the hippocampus during performance of a reward-based learning task
and examine whether hippocampal neurons show value place tuning. We will then examine how hippocampus
might communicate this information to orbitofrontal cortex by recording from both structures simultaneously.
Our prediction is that this communication will be mediated via synchronization of theta rhythms. However, such
measures are correlative. Establishing a causal role for neural rhythms has proven challenging, since it is
difficult to manipulate a specific neuronal rhythm without affecting other neuronal rhythms and/or neuronal
firing rates. We have recently developed a closed-loop approach, which involves recording rhythms in real-time
and using those signals to control the application of electrical microstimulation. This allows us to disrupt a
neuronal rhythm of a specific frequency. We will use this method to examine whether there is a causal role for
the theta oscillation in reward-based learning.
Taken together, the results of this proposal will provide convergent correlative and causal evidence for the role
of hippocampus and orbitofrontal cortex in reward-based learning and the mechanism by which they
communicate. This will help lay the groundwork for future potential therapeutic approaches for frontolimbic
dysfunction based on closed-loop microstimulation.
项目摘要(<30 行)
海马体和眶额皮质的功能障碍与多种疾病有关
神经精神疾病,包括强迫症、情绪障碍和成瘾。然而,
他们的具体贡献仍不清楚。一个主要问题是大多数关于海马机制的研究
来自啮齿动物的工作。然而海马体的结构却发生了巨大的变化
整个进化过程,特别是与精神病理学相关的部分。这需要
使用灵长类动物模型,但对灵长类动物海马体的研究很少。目前的补助金
将研究灵长类动物海马体的神经元特性,并确定它如何与
眶额皮质。
我们将采用的理论框架源自计算精神病学,特别关注
关于强化学习背后的计算过程如何有助于神经精神病学
疾病。我们的假设是海马体和眶额皮质都对
基于模型的强化学习,海马体负责构建认知图
实例化任务模型的神经表示,眶额皮层负责使用
认知图生成可用于指导决策的奖励预测。为了测试这个
假设,我们将使用高通道数神经元记录和电学的组合
微刺激。
我们将在执行基于奖励的学习任务期间记录海马体中的单个神经元
并检查海马神经元是否表现出价值位置调节。然后我们将检查海马体如何
可能会通过同时从两个结构进行记录来将此信息传达给眶额皮层。
我们的预测是,这种交流将通过 θ 节律的同步来介导。然而,这样的
措施是相关的。事实证明,建立神经节律的因果作用具有挑战性,因为它是
难以操纵特定的神经元节律而不影响其他神经元节律和/或神经元
发射率。我们最近开发了一种闭环方法,其中涉及实时记录节奏
并使用这些信号来控制电微刺激的应用。这使我们能够破坏
特定频率的神经节律。我们将使用这种方法来检查是否存在因果关系
基于奖励的学习中的 theta 振荡。
总而言之,该提案的结果将为该角色提供收敛的相关性和因果性证据
海马体和眶额皮质在基于奖励的学习中的作用及其机制
交流。这将有助于为未来额边缘的潜在治疗方法奠定基础
基于闭环微刺激的功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joni D Wallis其他文献
Joni D Wallis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joni D Wallis', 18)}}的其他基金
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10380534 - 财政年份:2019
- 资助金额:
$ 7.88万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10064645 - 财政年份:2019
- 资助金额:
$ 7.88万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10516049 - 财政年份:2019
- 资助金额:
$ 7.88万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10297842 - 财政年份:2019
- 资助金额:
$ 7.88万 - 项目类别:
Frontostriatal Rhythms Underlying Reinforcement Learning.
强化学习背后的额纹状体节律。
- 批准号:
10401263 - 财政年份:2018
- 资助金额:
$ 7.88万 - 项目类别:
The Unlearning of Stimulus-Outcome Associations through Intracortical Microstimulation
通过皮质内微刺激忘记刺激-结果关联
- 批准号:
9262185 - 财政年份:2016
- 资助金额:
$ 7.88万 - 项目类别:
The role of dopamine in anterior cingulate prediction errors
多巴胺在前扣带回预测误差中的作用
- 批准号:
8638633 - 财政年份:2014
- 资助金额:
$ 7.88万 - 项目类别:
相似国自然基金
蚕丝和家蚕前部丝腺纺丝液的原位超微结构研究
- 批准号:32302816
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑室旁核前部TGR5在慢性应激诱导的焦虑样行为中的作用及机制
- 批准号:82373860
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
家蚕前部丝腺特异表皮蛋白在角质层内膜构建及蚕丝纤维化中的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
谷氨酸能系统调节的前部岛叶皮层神经振荡在针刺缓解慢性疼痛中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态影像学的视乳头区域微循环灌注评估及NAION发病机制研究
- 批准号:81800840
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain Mechanisms Supporting Mindfulness Meditation-Induced Pain and Stress Relief
支持正念冥想引起的疼痛和压力缓解的大脑机制
- 批准号:
10752331 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Neuroanatomically informed biomarker discovery and neurofeedback intervention for OCD
基于神经解剖学的生物标志物发现和强迫症的神经反馈干预
- 批准号:
10739000 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Towards the identification of a mesoscale neural systems logic underlying innate behaviors
识别先天行为背后的中尺度神经系统逻辑
- 批准号:
10734660 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Targeting large-scale networks in depression with real-time fMRI neurofeedback
通过实时功能磁共振成像神经反馈针对抑郁症的大规模网络
- 批准号:
10721968 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Measurement and Mechanisms of Pain in Autistic Adults
成人自闭症患者疼痛的测量和机制
- 批准号:
10718172 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别: