Chemical Exchange Saturation Transfer MR Fingerprinting
化学交换饱和转移 MR 指纹图谱
基本信息
- 批准号:10491789
- 负责人:
- 金额:$ 34.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAmidesBiopsyBiopsy SpecimenBrain NeoplasmsChemicalsClinicClinicalConsumptionDevelopmentDiagnosisFingerprintFrequenciesGeneticGliomaGoalsImageImaging TechniquesImaging technologyKnowledgeMagnetic Resonance ImagingMalignant neoplasm of brainMeasurementMeasuresMethodsMolecularMonitorOperative Surgical ProceduresPatientsPeptidesPropertyProteinsProtocols documentationProtonsRecurrent tumorRelaxationReproducibilityResearch ProposalsScanningScheduleSchemeSignal TransductionSpeedStandardizationTechniquesTechnologyTestingTimeTissue SampleTissuesTrainingTranslationsVariantWaterWorkbaseclinical diagnosisclinical practiceconvolutional neural networkdeep learningdeep learning algorithmdeep learning modeldeep neural networkdesigndetection sensitivityhealthy volunteerhuman subjectimaging modalityimprovedlarge-scale databasenovelpatient stratificationpersonalized therapeuticquantitative imagingradio frequencyradiological imagingreconstructionsolutetreatment effecttreatment responsetumortumor heterogeneity
项目摘要
ABSTRACT
We propose to develop a fast, quantitative chemical exchange saturation transfer (CEST) imaging technique, by
integrating CEST with MR fingerprinting (MRF) and deep-learning techniques in a unified framework, with the
ultimate goal of translation into routine clinical practice. CEST imaging is an important molecular MRI method
that can generate contrast based on the proton exchange between solute labile protons and bulk water protons
in tissue. Amide proton transfer (APT) imaging, a variant of CEST-based molecular MRI, is based on the amide
protons (-NH) of endogenous mobile proteins and peptides in tissue. APT-MRI has been used successfully to
image protein content and pH, enabling tumor grading and the differentiation of active recurrent tumor from
treatment effects. However, most currently used APT imaging protocols depend on the acquisition of qualitative,
so-called APT-weighted (APTw) images, limiting the detection sensitivity to quantitative parameters, such as pH
or protein concentration. Currently, quantitative APT imaging is often attempted by assessing a so-called
Z-spectrum, generated by measuring the normalized water signal intensity as a function of saturation frequency
offset under varied radiofrequency (RF) saturation powers, which is time-consuming. Thus, the development of
fast, quantitative APT imaging techniques is needed. MRF is a novel quantitative imaging method that
simultaneously quantifies multiple tissue properties using pseudorandom acquisition parameters, and thus,
significantly improves scan efficiency compared to conventional techniques. MRF has been successfully applied
in patient studies to evaluate the range of and changes in MR relaxation times, T1 and T2, providing initial
evidence of its clinical utility. Recent advances in deep neural networks open a new possibility to efficiently solve
general inversion problems in MRF reconstruction, and to produce high-quality estimates of tissue parameters at
high speed. Our hypothesis is that, by combining APT, MRF, and deep-learning techniques, we can highly
accelerate image acquisition and accurately estimate the quantitative values of the tissue. Our hypotheses will
be tested through three specific aims: 1) to develop a fast 3D APT-MRF sequence and design an optimal RF
saturation schedule using deep-learning; 2) to quantify absolute amide proton concentrations and exchange
rates using convolutional neural networks; and 3) to demonstrate the initial clinical utility of the technology in
brain cancer, which will be confirmed by radiographically-guided stereotactic biopsy. Through quantitative APT
imaging technology, a priori knowledge of the pH and protein content in gliomas may help in the stratification of
patients into personalized therapeutic strategies and help monitor treatment response.
抽象的
我们建议开发一种快速、定量的化学交换饱和转移(CEST)成像技术,通过
将 CEST 与 MR 指纹识别 (MRF) 和深度学习技术集成在一个统一的框架中,
最终目标是转化为常规临床实践。 CEST成像是一种重要的分子MRI方法
可以根据溶质不稳定质子和大量水质子之间的质子交换产生对比度
在组织中。酰胺质子转移 (APT) 成像是基于 CEST 的分子 MRI 的一种变体,以酰胺为基础
组织中内源性移动蛋白和肽的质子 (-NH)。 APT-MRI已成功用于
对蛋白质含量和 pH 值进行成像,从而实现肿瘤分级以及区分活动性复发肿瘤和
治疗效果。然而,目前使用的大多数 APT 成像协议依赖于定性、
所谓的 APT 加权 (APTw) 图像,限制了对 pH 等定量参数的检测灵敏度
或蛋白质浓度。目前,定量 APT 成像通常通过评估所谓的
Z 谱,通过测量作为饱和频率函数的归一化水信号强度而生成
在不同的射频(RF)饱和功率下进行偏移,这是非常耗时的。因此,发展
需要快速、定量的 APT 成像技术。 MRF是一种新颖的定量成像方法
使用伪随机采集参数同时量化多个组织特性,因此,
与传统技术相比,显着提高了扫描效率。 MRF已成功申请
在患者研究中评估 MR 弛豫时间 T1 和 T2 的范围和变化,提供初始
其临床实用性的证据。深度神经网络的最新进展为有效解决问题提供了新的可能性
MRF 重建中的一般反演问题,并产生组织参数的高质量估计
高速。我们的假设是,通过结合 APT、MRF 和深度学习技术,我们可以高度
加速图像采集并准确估计组织的定量值。我们的假设将
通过三个具体目标进行测试:1)开发快速 3D APT-MRF 序列并设计最佳 RF
使用深度学习的饱和时间表; 2) 量化绝对酰胺质子浓度和交换
使用卷积神经网络进行速率; 3)展示该技术的初步临床应用
脑癌,将通过放射学引导的立体定向活检来确诊。通过定量APT
成像技术,神经胶质瘤中 pH 值和蛋白质含量的先验知识可能有助于分层
患者接受个性化治疗策略并帮助监测治疗反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hye Young Heo其他文献
Hye Young Heo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hye Young Heo', 18)}}的其他基金
Chemical Exchange Saturation Transfer MR Fingerprinting
化学交换饱和转移 MR 指纹图谱
- 批准号:
10295906 - 财政年份:2021
- 资助金额:
$ 34.73万 - 项目类别:
Chemical Exchange Saturation Transfer MR Fingerprinting
化学交换饱和转移 MR 指纹图谱
- 批准号:
10672421 - 财政年份:2021
- 资助金额:
$ 34.73万 - 项目类别:
Ultrafast Quantitative pH MRI for Acute Ischemic Stroke Patients
用于急性缺血性中风患者的超快定量 pH MRI
- 批准号:
10328241 - 财政年份:2020
- 资助金额:
$ 34.73万 - 项目类别:
Ultrafast Quantitative pH MRI for Acute Ischemic Stroke Patients
用于急性缺血性中风患者的超快定量 pH MRI
- 批准号:
10553103 - 财政年份:2020
- 资助金额:
$ 34.73万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluating a novel, orally-active TREM2-targeting drug in AD
评估一种新型口服活性 TREM2 靶向药物治疗 AD 的效果
- 批准号:
10735206 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Downfield MR spectroscopic imaging of the human brain
人脑的前场 MR 光谱成像
- 批准号:
10722828 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Studies on the impact of acetyl-cysteine on metabolism
乙酰半胱氨酸对代谢影响的研究
- 批准号:
10574934 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别:
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
- 批准号:
10606508 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别: