Ultrafast Quantitative pH MRI for Acute Ischemic Stroke Patients
用于急性缺血性中风患者的超快定量 pH MRI
基本信息
- 批准号:10328241
- 负责人:
- 金额:$ 38.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcidosisAcuteAlteplaseAmidesAnaerobic BacteriaAnimal ModelAnimalsAreaBenignBrainBrain hemorrhageBrain imagingBrain regionCause of DeathChemicalsClinicClinicalClinical TrialsDecision MakingDiffusionDiffusion Magnetic Resonance ImagingExcisionFrequenciesGoalsHemorrhageHumanImageImaging TechniquesIncidenceInfarctionInterventionIntravenousIschemic PenumbraIschemic StrokeMagnetic Resonance ImagingMetabolismMethodsMorbidity - disease rateOutcomePatient SelectionPatientsPerfusionPhysiologic pulsePhysiologicalPopulationProbabilityProtocols documentationProtonsReperfusion TherapyResearch ProposalsRetrospective StudiesRiskScanningSelection for TreatmentsSensitivity and SpecificitySignal TransductionSpeedStrokeSymptomsTechniquesTestingTherapeuticTimeTissuesTrainingTranslatingTranslationsVariantVisualizationWorkacute strokebaseblood-brain barrier permeabilizationclinical translationdeep learningdeep learning algorithmdeep learning modeldesigndetection sensitivitydiagnostic accuracydisabilityendovascular thrombectomyhuman imagingimaging modalityimprovedmortalitymultimodalitynovelperfusion imagingpredict clinical outcomeradio frequencyrisk benefit ratiostandard carestroke patientstroke therapytargeted treatmentthrombolysistime usetreatment effect
项目摘要
ABSTRACT
Ischemic stroke is one of the leading causes of morbidity and mortality in the U.S. The goal of acute ischemic
stroke therapy is to salvage tissue that is at risk of infarction, but still viable, through the use of reperfusion
strategies. Current reperfusion therapies are limited by a tight time window for treatment and by the potential risk
of brain hemorrhage. Using this time-based approach, only a limited number of stroke patients are eligible for
treatment. Patients who present beyond the standard treatment time windows can benefit from therapy when
identified based on multimodal MRI; however, precise and accurate identification of the salvageable tissue is
essential, as the potential beneficial effect of treatment must be weighed against the risk of hemorrhage.
Although a diffusion/perfusion MRI mismatch has been suggested as a guide with which to identify the presence
of salvageable tissues and to serve as a selection marker for thrombolysis, the results of clinical trials using this
criterion have been inconclusive, in part because of the inclusion of regions of oligemia in the penumbra, which
overestimates the size of the tissue at risk. Amide proton transfer (APT) MRI has shown promise in detecting
such an acidosis-based ischemic penumbra in animal models and in human stroke patients. However, most
currently used APT imaging protocols are not very practical and not optimized with respect to the magnitude of
signal changes caused by the pH effect. More quantitative APT-MRI typically would require an even longer scan
time due to the use of multiple RF saturation frequencies, multiple acquisitions, and a long RF saturation pulse
(or pulse train), all of which hamper clinical translation due to the very small time-window between stroke onset
and possible thrombolysis treatment. Our long-term goal is to develop an ultrafast pH imaging technique for
routine clinical use to guide reperfusion therapies for hyperacute stroke patients at various therapeutic time
windows, as well as predict the risk of hemorrhagic transformation (HT) following acute ischemic stroke. The first
clinical hypothesis is that, similar to animal studies, the pH imaging penumbra due to ischemic tissue acidosis
predicts the maximum final infarction size if no reperfusion is initiated. Our second clinical hypothesis is that the
presence of severe tissue acidosis in the ischemic core is associated with an increased probability of secondary
HT. Our hypotheses will be tested through three specific aims: 1) to develop and optimize an ultrafast quantitative
pH imaging method; 2) to validate this technique and assess the diagnostic accuracy of the acidosis-based
ischemic penumbra in a clinical setting; and 3) to develop a novel deep-learning model with which to predict HT
following acute ischemic stroke, and quantify the sensitivity and specificity of pH imaging. This work is expected
to accelerate the translation of APT-MRI into a clinically viable and robust method. The addition of pH imaging
to the standard MRI protocol is expected to enable better visualization of the true ischemic penumbra, thus
improving predictions of clinical outcome and reducing the incidence of HT.
抽象的
缺血性中风是美国发病和死亡的主要原因之一。急性缺血性中风的目标
中风治疗是通过再灌注来挽救有梗塞风险但仍然可行的组织
策略。目前的再灌注疗法受到治疗时间窗口紧张和潜在风险的限制
的脑出血。使用这种基于时间的方法,只有有限数量的中风患者有资格获得
治疗。超出标准治疗时间窗的患者可以从治疗中受益:
基于多模态 MRI 进行识别;然而,精确和准确地识别可挽救的组织是
至关重要,因为必须权衡治疗的潜在有益效果与出血风险。
尽管扩散/灌注 MRI 不匹配已被建议作为识别存在的指南
的可挽救组织并作为溶栓的选择标记,使用此的临床试验结果
标准尚无定论,部分原因是半影中包含了寡血症区域,这
高估了危险组织的大小。酰胺质子转移 (APT) MRI 在检测方面显示出前景
在动物模型和人类中风患者中存在这种基于酸中毒的缺血半暗带。然而,大多数
目前使用的 APT 成像协议不是很实用,并且没有针对 APT 的大小进行优化。
pH 效应引起的信号变化。更定量的 APT-MRI 通常需要更长的扫描时间
由于使用多个射频饱和频率、多次采集和长射频饱和脉冲而缩短了时间
(或脉冲串),由于中风发作之间的时间窗口非常小,所有这些都阻碍了临床转化
以及可能的溶栓治疗。我们的长期目标是开发一种超快 pH 成像技术
常规临床用于指导超急性卒中患者在不同治疗时间的再灌注治疗
窗口,以及预测急性缺血性中风后出血性转化(HT)的风险。第一个
临床假设是,与动物研究类似,pH 成像半暗带是由于缺血性组织酸中毒引起的
如果不开始再灌注,则可以预测最终的最大梗塞面积。我们的第二个临床假设是
缺血核心区严重组织酸中毒的存在与继发性酸中毒的可能性增加有关
HT。我们的假设将通过三个具体目标进行检验:1)开发和优化超快定量
pH成像法; 2) 验证该技术并评估基于酸中毒的诊断准确性
临床环境中的缺血半暗带; 3) 开发一种新颖的深度学习模型来预测 HT
急性缺血性中风后,并量化 pH 成像的敏感性和特异性。这项工作预计
加速将 APT-MRI 转化为临床上可行且稳健的方法。添加 pH 成像
标准 MRI 协议有望能够更好地可视化真正的缺血半暗带,因此
改善临床结果的预测并降低 HT 的发生率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hye Young Heo其他文献
Hye Young Heo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hye Young Heo', 18)}}的其他基金
Chemical Exchange Saturation Transfer MR Fingerprinting
化学交换饱和转移 MR 指纹图谱
- 批准号:
10295906 - 财政年份:2021
- 资助金额:
$ 38.48万 - 项目类别:
Chemical Exchange Saturation Transfer MR Fingerprinting
化学交换饱和转移 MR 指纹图谱
- 批准号:
10491789 - 财政年份:2021
- 资助金额:
$ 38.48万 - 项目类别:
Chemical Exchange Saturation Transfer MR Fingerprinting
化学交换饱和转移 MR 指纹图谱
- 批准号:
10672421 - 财政年份:2021
- 资助金额:
$ 38.48万 - 项目类别:
Ultrafast Quantitative pH MRI for Acute Ischemic Stroke Patients
用于急性缺血性中风患者的超快定量 pH MRI
- 批准号:
10553103 - 财政年份:2020
- 资助金额:
$ 38.48万 - 项目类别:
相似国自然基金
褪黑素通过其受体调控绵羊亚急性瘤胃酸中毒黏膜损伤的机制
- 批准号:32160858
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
基于奶牛摄食行为识别的亚急性瘤胃酸中毒诊断模型研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
奶山羊瘤胃上皮外泌体miRNA调控亚急性瘤胃酸中毒发生的宿主-微生物互作机制
- 批准号:31902184
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
FOXA2对SARA引起的反刍动物肝脏炎症的调节作用与机制研究
- 批准号:31872528
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
微生物群感信号分子acy-HSL在SARA引起的结肠黏膜上皮细胞凋亡中的作用及机制研究
- 批准号:31572433
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
Mechanistic inquiry of GPR68-mediated neuroprotection against post-stroke deficits and VCID
GPR68 介导的针对中风后缺陷和 VCID 的神经保护作用的机制探究
- 批准号:
10807584 - 财政年份:2023
- 资助金额:
$ 38.48万 - 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10522141 - 财政年份:2022
- 资助金额:
$ 38.48万 - 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10652655 - 财政年份:2022
- 资助金额:
$ 38.48万 - 项目类别:
Ultrafast Quantitative pH MRI for Acute Ischemic Stroke Patients
用于急性缺血性中风患者的超快定量 pH MRI
- 批准号:
10553103 - 财政年份:2020
- 资助金额:
$ 38.48万 - 项目类别:
3D Renal Tissue Chip Models to Evaluate Nephrotoxic Effects of Drugs
用于评估药物肾毒性作用的 3D 肾组织芯片模型
- 批准号:
10249974 - 财政年份:2020
- 资助金额:
$ 38.48万 - 项目类别: