3D Renal Tissue Chip Models to Evaluate Nephrotoxic Effects of Drugs
用于评估药物肾毒性作用的 3D 肾组织芯片模型
基本信息
- 批准号:10249974
- 负责人:
- 金额:$ 3.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAcute Kidney Tubular NecrosisAddressAgeAnimal ModelAnimalsArchitectureBasic ScienceBiocompatible MaterialsBiomedical EngineeringBlood VesselsBlood capillariesCell Culture TechniquesCell LineCell SurvivalCell physiologyCellsClinical TrialsCoculture TechniquesCommunitiesComplexCuesCultured CellsDermalDevelopmentDevicesDiabetic NephropathyDiseaseDisease modelDrug EvaluationDrug IndustryDrug ScreeningDrug toxicityDrug usageEmerging TechnologiesEndothelial CellsEngineeringEnvironmentEpithelial CellsEvaluationExhibitsExposure toFailureFibroblastsFunctional disorderGelatinGenerationsGlucoseGoalsHomeostasisHumanHydrogelsIn VitroIndividualInjuryInjury to KidneyKidneyKidney DiseasesLiquid substanceMaintenanceMeasurementMechanical StressMechanicsMicrofluidicsModelingNephronsOrganPathologicPathway interactionsPerfusionPericytesPharmaceutical PreparationsPharmacologyPhenotypePhysiologicalPlayProcessProteinsProtocols documentationProximal Kidney TubulesRaceRecreationRenal TissueRenal functionRenal tubular acidosisResearchRiskRoleSex DifferencesStimulusStretchingStructureSystemTechnologyTherapeuticTight JunctionsTissue EngineeringTissue MicroarrayTissuesToxic effectToxicity TestsToxinTranslational ResearchTranslationsTubular formationUmbilical veinValidationWorkage differencebasecell injurycell typeclinical practicecostcytokinedesigndrug discoverydrug efficacyengineering designenzyme activityfallsfluid flowglomerular filtrationhigh throughput screeninghigh-throughput drug screeningin vitro Modelin vivointerstitialmodel developmentnephrotoxicitynovelorgan on a chippatient populationpre-clinicalpreservationpressurepreventprototyperacial differencerenal tubular dysfunctionresponsescreeningsexshear stressspecies differencesuccessthree dimensional structuretooltoxicant
项目摘要
PROJECT SUMMARY
The current pathway for drug discovery is associated with costs of $2.55 billion and between 10-15 years of
development for a single drug to reach the market. The challenges in predicting drug toxicities and efficacies are
attributed to inherent species differences in drug-metabolizing enzyme activities and cell-type-specific
sensitivities to toxicants. Organs-on-a-chip are an emerging technology in disease modeling and screening
therapeutics to address discrepancies between animal models and human clinical trials. They utilize tissue
engineering, fluid mechanics, and biomaterials to replicate in vivo architectures and functions of complex organs
and tissues. The renal proximal tubule (PT) in vivo is exposed to fluid flow and mechanical stress (pressure,
stretch, shear) and these stimuli play an important role in maintaining cellular phenotype and homeostasis.
Currently, available prototypes fall short of replicating the in vivo environment because they often fail to mimic
the physiological forces. Therefore, these models have had limited success in predicting drug-induced
nephrotoxicity. In this proposal, we will bioengineer and evaluate a dynamic platform of the PT and study the
effects of drugs and tubular dysfunction to establish its potential for translational research. Human renal proximal
tubule cells (hRPTECs) will be cultured within gelatin methacryloyl (GelMA) hydrogels under physiological shear
and pressure. These devices will also incorporate the diversity in the patient population by using hRPTECs from
multiple donors to determine the impact of age, sex, and racial differences on nephrotoxicity effects. Drugs will
be classified based on their nephrotoxic risk (high, intermediate, and low) and the platform will incorporate
automated readouts to reflect cellular function and viability. Together, this will help investigate more accurate
pharmacological and pathological responses and to determine the utility of in vitro perfusion models. Secondly,
a more complex and novel bioengineered platform will be developed. This design contains a 3D PT tubule and
3D vascular vessels surrounded by pericyte vascular networks. The platform will then be subjected to
physiological shear stress and pressure to demonstrate the flow loop can accurately mimic cellular organization,
establishment of tight junctions, maintenance of barrier function, and selective transport as seen in vivo. This
device composes of a co-culture of hRPTECs, human umbilical vein endothelial cells (hUVECs), and human
dermal fibroblasts (hDF) within a GelMA hydrogel to model an environment where both reabsorption and
secretion functions are replicated. Lastly, this proposal investigates the translational potential of PT tissue chips
through demonstration of a PT diabetic nephropathy model and engineering multi-well PTs to facilitate high-
throughput studies. The organ-on-a-chip developed in this study will provide an enabling technology that has
broad applications in basic and translational research to model disease states, study interactions with other
tissue chips, and accurately predict drug toxicity.
项目摘要
当前的药物发现途径与25.5亿美元和10 - 15年之间的成本有关
开发单一药物才能进入市场。预测药物毒性和功效的挑战是
归因于药物代谢酶活性和细胞类型特异性的固有物种差异
对有毒物质的敏感性。片上器官是疾病建模和筛查中的新兴技术
解决动物模型与人类临床试验之间的差异的治疗剂。他们利用组织
工程学,流体力学和生物材料以复制体内体系结构和复杂器官功能
和组织。体内肾近端小管(PT)暴露于流体流动和机械应力(压力,
拉伸,剪切)和这些刺激在维持细胞表型和稳态方面起着重要作用。
目前,可用的原型不复制体内环境,因为它们通常无法模仿
生理力量。因此,这些模型在预测药物诱导的
肾毒性。在此建议中,我们将生物工程师和评估PT的动态平台,并研究
药物和管状功能障碍的影响,以建立其转化研究的潜力。人类肾脏近端
小管细胞(HRPTEC)将在生理剪切胶凝胶(Gelma)水凝胶中培养
和压力。这些设备还将通过使用来自患者群体的多样性。
确定年龄,性别和种族差异对肾毒性影响的多个捐助者。毒品会
根据其肾毒性风险(高,中级和低)进行分类,该平台将合并
自动读数以反映细胞功能和生存能力。一起,这将有助于调查更准确的
药理和病理反应,并确定体外灌注模型的实用性。第二,
将开发一个更复杂和新颖的生物工程平台。该设计包含3D PT小管和
3D血管血管被周围的血管网络包围。然后,该平台将受到
生理剪切应力和压力以证明流动环可以准确地模仿细胞组织,
建立紧密的连接,维护屏障功能以及体内看到的选择性传输。这
设备由HRPTEC,人脐静脉内皮细胞(HUVEC)和人类组成
凝胶水凝胶中的皮肤成纤维细胞(HDF),以建模一个重吸收和吸收的环境
分泌功能被复制。最后,该提案研究了PT组织芯片的翻译潜力
通过证明PT糖尿病性肾病模型和工程多孔PTS,以促进高
吞吐量研究。本研究中开发的器官芯片将提供一种有利的技术
在模型状态的基础和转化研究中广泛应用,研究与其他的相互作用
组织芯片,并准确预测药物毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie Donoghue其他文献
Leslie Donoghue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie Donoghue', 18)}}的其他基金
3D Renal Tissue Chip Models to Evaluate Nephrotoxic Effects of Drugs
用于评估药物肾毒性作用的 3D 肾组织芯片模型
- 批准号:
10471996 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别:
相似国自然基金
RIP3/MLKL/GSDMD程序性调控坏死与炎症正反馈环路反应在急性肾损伤慢性化中的作用机制研究
- 批准号:81870472
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:面上项目
Gasdermin家族蛋白介导的细胞程序性坏死在急性肾衰竭中的作用
- 批准号:81700596
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于光学相干成像评估移植肾脏功能研究
- 批准号:61675044
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
人参皂苷Rg1联合HIF-1α基因修饰的人羊膜间充质干细胞对小鼠急性肾小管坏死模型协同治疗效果及机制探讨
- 批准号:81460136
- 批准年份:2014
- 资助金额:47.0 万元
- 项目类别:地区科学基金项目
Wnt信号通路对肾小管上皮细胞极性的影响
- 批准号:30971377
- 批准年份:2009
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of Lymphatic and Vascular Remodeling in Acute Kidney Injury
急性肾损伤中淋巴和血管重塑的调节
- 批准号:
10750349 - 财政年份:2023
- 资助金额:
$ 3.73万 - 项目类别:
Patient-Derived Kidney Organoids For Modeling Kidney Injury
用于肾损伤建模的患者肾脏类器官
- 批准号:
10663719 - 财政年份:2023
- 资助金额:
$ 3.73万 - 项目类别:
Rac1 and the actin cytoskeleton in renal tubular repair
Rac1 和肌动蛋白细胞骨架在肾小管修复中的作用
- 批准号:
10739610 - 财政年份:2023
- 资助金额:
$ 3.73万 - 项目类别:
Unanticipated roles of C5aR1 Signaling Leading from Acute to Chronic Kidney Disease
C5aR1 信号转导从急性肾病到慢性肾病的意外作用
- 批准号:
10591053 - 财政年份:2023
- 资助金额:
$ 3.73万 - 项目类别:
Importance of cell-matrix interactions in kidney repair after acute kidney injury
细胞-基质相互作用在急性肾损伤后肾脏修复中的重要性
- 批准号:
10585440 - 财政年份:2023
- 资助金额:
$ 3.73万 - 项目类别: