Secure and Privacy-preserving Genome-wide and Phenome-wide Association Studies via Intel Software Guard Extensions (SGX)
通过英特尔软件防护扩展 (SGX) 进行安全且保护隐私的全基因组和全表型关联研究
基本信息
- 批准号:10470341
- 负责人:
- 金额:$ 34.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-09 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministratorAgreementAlgorithmsAttentionBedsBiomedical ComputingBiomedical ResearchCodeCollaborationsCommunitiesComputer softwareConsumptionCustomDataData AnalysesData ProtectionData SecurityData Storage and RetrievalDatabasesDiseaseEnvironmentGenomeGenomicsHealthHumanIndividualIndustrializationInstitutionMainstreamingMemoryMetadataMethodsOperating SystemOutsourcingPatientsPhenotypePrivacyPrivatizationProcessResearchResearch PersonnelResourcesRetrievalRiskRunningSecondary toSecureSecuritySideStreamSystemTechniquesTechnologyTestingTrustVariantVendorbasecase controlcohortcomputer studiescryptographydata disseminationdata formatdata sharingdatabase of Genotypes and Phenotypesdesigndirect applicationdisease phenotypeencryptiongenome wide association studygenome-widegenomic datahuman genomicsimprovedindexinginterestlarge datasetsnovelopen sourcepatient privacyphenomephenotypic dataprivacy preservationrapid growthscale upscreeningsecondary analysissharing platformtransmission processvectorwhole genome
项目摘要
With the rapid growth of the data volume (e.g., human genomic data) collected in biomedical research,
data protection, in particular for patients’ privacy in secondary uses of these data, has attracted much
attention recently. Today, a vast majority of sensitive biomedical data, including individual human
genomic data and their associated health metadata, are shared only through controlled-access
databases (e.g. dbGaP) and biomedical researchers are required to sign a user agreement before
getting access to these data. Security research has already produced a suite of techniques that can
serve the general purpose of privacy-preserving computation; their direct applications are, however,
too expensive (in terms of resource consumption) for real-world biomedical applications.
An alternative solution is hardware-assisted Trusted Execution Environment (TEE) solutions developed
or being developed by both hardware vendors (Intel, AMD, ARM) and the open-source research
community. A prominent example is Intel’s Software Guard Extension (SGX), which is available as a
feature in Intel's mainstream CPUs (i.e., Skylake and Kaby Lake). In this project, we plan to explore
potential applications of TEE to two popular genome computation tasks involving sensitive biomedical
data, i.e., the genome-wide and phenome-wide association studies. For GWAS, a secondary research
user may collect genomic sequences (in encrypted form) with (cases) or without (controls) a disease
phenotype from multiple data owners, on which association tests or advanced GWAS algorithms can
be conducted within the SGX enclave. Similarly, for PheWAS, a user may collect phenotype data from
individuals whose genomes containing (case) or not containing (control) one or more specific variations.
We will address two issues when developing these approaches: 1) we will customize GWAS/PheWAS
algorithms for efficient execution in the TEE with limited resources (e.g, memory, I/O, etc), and 2) we
will develop new genome computing outsourcing and data sharing platforms suing the SGX techniques,
and further understand and mitigate its potential side-channel risks with regards to GWAS/PheWAS
computing tasks. The proposed research will lead to a practical solution for secure GWAS and PheWAS
in three application scenarios: 1) secure outsourcing: a research institution collects matched genomic
and phenotypic data from a large cohort of case and control individuals, and outsources the storage of
these data and potential repeated GWAS and PheWAS computation to a public or commercial cloud;
2) secure collaboration: a consortium of researchers across multiple institutions attempt to collaborate
on a large GWAS/PheWAS study using the data collected by each participating institution; and 3)
secure data sharing: researchers want to share their data with a broad biomedical research community
so that potential data users may conduct a secondary GWAS/PheWAS analysis.
随着在生物医学研究中收集的数据量的快速增长(例如人类基因组数据),
数据保护,特别是对于患者在这些数据的二次用途中的隐私,已经吸引了很多
最近注意。如今,绝大多数敏感的生物医学数据,包括个体人类
基因组数据及其相关的健康元数据仅通过受控访问共享
数据库(例如DBGAP)和生物医学研究人员必须签署用户协议
访问这些数据。安全研究已经生产了一套可以
提供保护隐私计算的一般目的;但是,他们的直接申请是
对于实际生物医学应用而言,太昂贵(在资源消耗方面)。
另一种解决方案是已开发了硬件辅助的可信执行环境(TEE)解决方案
或由硬件供应商(英特尔,AMD,ARM)和开源研究开发
社区。一个突出的例子是英特尔的软件守卫扩展名(SGX),可作为
英特尔主流CPU(即Skylake和Kaby Lake)中的特征。在这个项目中,我们计划探索
TEE在两个流行的基因组计算任务上的潜在应用涉及敏感的生物医学
数据,即全基因组和全球范围的关联研究。对于二级研究GWAS
用户可以使用(情况)或没有(对照)A疾病收集基因组序列(以加密形式)
来自多个数据所有者的表型,关联测试或高级GWAS算法可以
在SGX飞地内进行。同样,对于Phewas,用户可以从
含有(病例)或不包含(对照)一个或多个特定变异的个体。
开发这些方法时,我们将解决两个问题:1)我们将自定义GWAS/PHEWAS
在TEE中有限的资源(例如,内存,I/O等)中有效执行的算法,以及2)我们
将开发新的基因组计算外包和提起SGX技术的数据共享平台,
并进一步了解并减轻有关GWAS/PHEWAS的潜在侧向通道风险
计算任务。拟议的研究将为安全GWA和Phewas提供实用的解决方案
在三种应用方案中:1)安全外包:研究机构收集匹配的基因组
以及来自大量案件和控制个人的表型数据,并将存储外包
这些数据以及潜在的重复GWAS和PHEWAS计算对公共或商业云;
2)安全合作:多个机构的研究人员联盟试图合作
在大型GWAS/PHEWAS研究中,使用每个参与机构收集的数据; 3)
安全数据共享:研究人员希望与广泛的生物医学研究社区共享他们的数据
因此,潜在的数据使用者可以进行次要GWAS/PHEWAS分析。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Haplotype-based membership inference from summary genomic data.
- DOI:10.1093/bioinformatics/btab305
- 发表时间:2021-07-12
- 期刊:
- 影响因子:0
- 作者:Bu D;Wang X;Tang H
- 通讯作者:Tang H
A Fast, Provably Accurate Approximation Algorithm for Sparse Principal Component Analysis Reveals Human Genetic Variation Across the World
稀疏主成分分析的快速、可证明准确的近似算法揭示了世界各地的人类遗传变异
- DOI:10.1007/978-3-031-04749-7_6
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chowdhury, Agniva;Bose, Aritra;Zhou, Samson;Woodruff, David P.;Drineas, Petros
- 通讯作者:Drineas, Petros
Hutch++: Optimal Stochastic Trace Estimation.
- DOI:10.1137/1.9781611976496.16
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Meyer RA;Musco C;Musco C;Woodruff DP
- 通讯作者:Woodruff DP
Privacy-preserving construction of generalized linear mixed model for biomedical computation
- DOI:10.1093/bioinformatics/btaa478
- 发表时间:2020-07-01
- 期刊:
- 影响因子:5.8
- 作者:Zhu, Rui;Jiang, Chao;Tang, Haixu
- 通讯作者:Tang, Haixu
How to reduce dimension with PCA and random projections?
- DOI:10.1109/tit.2021.3112821
- 发表时间:2021-12
- 期刊:
- 影响因子:2.5
- 作者:Yang, Fan;Liu, Sifan;Dobriban, Edgar;Woodruff, David P.
- 通讯作者:Woodruff, David P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAIXU TANG其他文献
HAIXU TANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAIXU TANG', 18)}}的其他基金
Secure and Privacy-preserving Genome-wide and Phenome-wide Association Studies via Intel Software Guard Extensions (SGX)
通过英特尔软件防护扩展 (SGX) 进行安全且保护隐私的全基因组和全表型关联研究
- 批准号:
10269896 - 财政年份:2019
- 资助金额:
$ 34.06万 - 项目类别:
Encryption methods and software for privacy-preserving analysis of biomedical data
用于生物医学数据隐私保护分析的加密方法和软件
- 批准号:
9357584 - 财政年份:2016
- 资助金额:
$ 34.06万 - 项目类别:
Privacy preserving technologies for human genome data analysis and dissemination
用于人类基因组数据分析和传播的隐私保护技术
- 批准号:
8738705 - 财政年份:2013
- 资助金额:
$ 34.06万 - 项目类别:
Privacy preserving technologies for human genome data analysis and dissemination
用于人类基因组数据分析和传播的隐私保护技术
- 批准号:
8421498 - 财政年份:2013
- 资助金额:
$ 34.06万 - 项目类别:
IDENTIFICATION OF LTR RETROTRANSPOSONS IN VERTEBRATE GENOMES
脊椎动物基因组中 LTR 反转录转座子的鉴定
- 批准号:
7723278 - 财政年份:2008
- 资助金额:
$ 34.06万 - 项目类别:
IDENTIFICATION OF LTR RETROTRANSPOSONS IN VERTEBRATE GENOMES
脊椎动物基因组中 LTR 反转录转座子的鉴定
- 批准号:
7601541 - 财政年份:2007
- 资助金额:
$ 34.06万 - 项目类别:
相似海外基金
Design and implementation of a social cognitive theory-based medication adherence coaching intervention
基于社会认知理论的药物依从性辅导干预的设计与实施
- 批准号:
10644251 - 财政年份:2023
- 资助金额:
$ 34.06万 - 项目类别:
Pilot Testing of a Game-Based Intervention to Promote HPV Vaccination in Families with Unvaccinated Children
基于游戏的干预措施的试点测试,以促进有未接种疫苗的儿童的家庭接种 HPV 疫苗
- 批准号:
10647454 - 财政年份:2023
- 资助金额:
$ 34.06万 - 项目类别:
The Use of Telemedicine in the Care of Nursing Home Residents with Alzheimer's Disease and Related Dementias During and After the COVID-19 Pandemic
在 COVID-19 大流行期间和之后使用远程医疗来护理患有阿尔茨海默病和相关痴呆症的疗养院居民
- 批准号:
10594541 - 财政年份:2022
- 资助金额:
$ 34.06万 - 项目类别:
Development and testing of a digitally assisted risk reduction platform for youth at high risk for suicide
为自杀高危青少年开发和测试数字辅助风险降低平台
- 批准号:
10509791 - 财政年份:2022
- 资助金额:
$ 34.06万 - 项目类别: