Learning invariant representation from high- dimensional data for quantitative stroke reha
从高维数据中学习不变表示以进行定量中风康复
基本信息
- 批准号:10469389
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-16 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBiomedical ResearchCalibrationCaringClassificationDataData SetDiagnosticDoseDue ProcessGeneticGenomicsImageImpairmentLearningMeasurementMedicalMethodologyModelingMotionMotorMovementNoisePatientsPerformanceProceduresPublic HealthRecoveryRehabilitation therapyResearchResearch PersonnelStrokeTechniquesTrainingWorkbaseclinical diagnosticsclinical practicedisabilityhandheld mobile deviceimprovedinnovationinterestmachine learning algorithmmultidimensional datanetwork modelsnovelpatient variabilitysensorsensor technologystroke outcomestroke patientstroke rehabilitationwearable device
项目摘要
Advances in wearable electronics, personal mobile devices, and sensor technology are opening the door to
many promising applications in medical care and biomedical research. However, the resulting datasets are
often challenging to process due to variability caused by extraneous effects unrelated to the tasks of
interest, such as changes in environmental conditions, heteroscedasticity in measurement noise, or patient
idiosyncrasies. These effects produce systematic differences between the data used to train machine-
learning algorithms and the data on which they are applied in practice, impairing real-world performance.
The proposed research will address the fundamental problem of factoring out extraneous effects
associated with known nuisance variables. We will develop a novel methodology for extracting features that
ar.e invariant to nuisance variables-and hence also to the associated extraneous effects-but that are still
useful for classification or regression. The methodology is based on nonparametric deep-network models
that perform automatic normalization of the data, and further enforce invariance via adversarial learning.
We will apply the approach to an important problem in stroke rehabilitation, the quantitated dosing of motor
training. Using a dataset of sensor-based motion data, we will train the model to identify and count
functional movements in stroke patients performing rehabilitation activities. We expect to show that our
approach can surmount patient variability to enable rigorous movement classification and quantitation. The
proposed work is significant, because it will empower investigators to undertake the dosing trials critically
needed in stroke rehabilitation. The proposed work is innovative, because it departs from traditional data
preprocessing techniques by combining advanced data normalization and model calibration procedures.
Our work is likely to have a positive impact on stroke rehabilitation by facilitating the research required to
change clinical practice and improve stroke outcomes. Our quantitative approach is broadly generalizable
to applications hindered by nuisance variables, such as medical diagnostics and genomics.
可穿戴电子产品、个人移动设备和传感器技术的进步为
在医疗保健和生物医学研究中有许多有前景的应用。然而,得到的数据集是
由于与任务无关的外部影响所引起的可变性,通常对流程具有挑战性
兴趣,例如环境条件的变化、测量噪声的异方差性或患者
特质。这些影响会产生用于训练机器的数据之间的系统差异
学习算法及其在实践中应用的数据,从而损害现实世界的性能。
拟议的研究将解决排除无关影响的基本问题
与已知的有害变量相关。我们将开发一种新颖的方法来提取特征
对于有害变量是不变的,因此对于相关的无关效应也是不变的,但仍然是
对于分类或回归很有用。该方法基于非参数深度网络模型
执行数据的自动标准化,并通过对抗性学习进一步增强不变性。
我们将将该方法应用于中风康复中的一个重要问题,即运动神经元的定量给药
训练。使用基于传感器的运动数据集,我们将训练模型进行识别和计数
中风患者进行康复活动的功能性运动。我们希望表明我们的
该方法可以克服患者的变异性,从而实现严格的运动分类和定量。这
拟议的工作意义重大,因为它将使研究人员能够批判性地进行剂量试验
中风康复所需。拟议的工作具有创新性,因为它脱离了传统数据
结合先进的数据标准化和模型校准程序的预处理技术。
我们的工作可能会通过促进中风康复所需的研究对中风康复产生积极影响。
改变临床实践并改善卒中结果。我们的定量方法具有广泛的普适性
受干扰变量阻碍的应用,例如医疗诊断和基因组学。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ANALYSIS OF TRANSFER LEARNING FOR SELECT RETINAL DISEASE CLASSIFICATION.
- DOI:10.1097/iae.0000000000003282
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Gelman R;Fernandez-Granda C
- 通讯作者:Fernandez-Granda C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Fernandez-Granda其他文献
Carlos Fernandez-Granda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Fernandez-Granda', 18)}}的其他基金
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
- 批准号:
10831259 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Learning invariant representation from high- dimensional data for quantitative stroke reha
从高维数据中学习不变表示以进行定量中风康复
- 批准号:
9916457 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Learning invariant representation from high- dimensional data for quantitative stroke reha
从高维数据中学习不变表示以进行定量中风康复
- 批准号:
9978948 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Learning invariant representation from high- dimensional data for quantitative stroke reha
从高维数据中学习不变表示以进行定量中风康复
- 批准号:
10199051 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
面向生物医学文本的知识自动总结研究
- 批准号:72304189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物医学跨本体术语相似度方法及其在B细胞非霍奇金淋巴瘤中的应用研究
- 批准号:62372276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向生物医学领域的多模态学术图像不端检测技术研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
水凝胶光纤氧气传感关键问题研究及在生物医学中的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属配位诱导的靶向蛋白降解平台的构建及生物医学应用研究
- 批准号:22277141
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Machine Learning-Based Identification of Cardiomyopathy Risk in Childhood Cancer Survivors
基于机器学习的儿童癌症幸存者心肌病风险识别
- 批准号:
10730177 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: