Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery

改变抗生素发现的创新技术。

基本信息

  • 批准号:
    10463688
  • 负责人:
  • 金额:
    $ 185.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-07 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Since Alexander Fleming's discovery of penicillin, antibiotics have been arguably the single medical intervention that has saved more lives than any other. However, this life saving intervention is now being threatened by the problem of antibiotic resistance that is outpacing the discovery of new antibiotics, resulting in the WHO and CDC declaring antibiotic resistance as one of the greatest threats to human health. Projections include the possibility of 10 million deaths per year by 2050 with tremendous impact on the global economy in the absence of a significant shift in the current antibiotic landscape We have developed novel strategies to interface genomics and high-throughput chemical screening technologies to transform antibiotic discovery, with a focus here on the major Gram-negative pathogen Pseudomonas aeruginosa (PsA), specifically targeting its essential outer membrane proteins (OMPs) and outer membrane associated proteins (OMAPs) in order to circumvent the need for xenobiotic cytoplasmic accumulation. We have performed chemical screening in a multiplexed fashion against a pool of bar-coded, genetically engineered target-specific strains in which each of the essential OMP/OMAP target genes has been knocked-down by promoter replacement. Next generation sequencing is used to enumerate amplified barcodes to measure the census of each mutant strain in the pool in response to a small molecule. Controlled low expression of the protein of interest in each of these strains hypersensitizes them to inhibitors of the corresponding target. Importantly, this strategy has allowed us (1) to expand the numbers of small molecule candidates by identifying small molecules that would have eluded discovery if screening simply against wild-type PsA, (2) to couple whole cell screening with target-based discovery, and (3) to target essential proteins of unknown function or lack a high-throughput assay. Using this approach to target 9 essential OMP/OMAP targets in a single screen, we have identified candidates targeting the outer membrane proteins LptD and OprL, proteins required for LPS transport and cell membrane integrity, respectively. Because these targets lack robust functional assays, we have developed a high-throughput transcriptomics-driven pipeline coupled with machine learning to identify and prioritize molecules with a high likelihood of specifically inhibiting these targets. We now propose to develop the hits with completely novel mechanisms of action to lead optimization and demonstrate in vivo proof of concept.
自从亚历山大·弗莱明发现青霉素以来,抗生素可以说是唯一的医疗手段。 比任何其他干预措施都挽救了更多的生命。然而,这种挽救生命的干预措施目前正在 受到抗生素耐药性问题的威胁,该问题的速度超过了新抗生素的发现,导致 世界卫生组织和疾病预防控制中心宣布抗生素耐药性是对人类健康的最大威胁之一。预测 到 2050 年,每年可能有 1000 万人死亡,这对全球经济产生巨大影响 目前的抗生素格局没有发生重大转变 我们开发了连接基因组学和高通量化学筛选的新策略 改变抗生素发现的技术,重点关注主要的革兰氏阴性病原体 铜绿假单胞菌 (PsA),专门针对其必需的外膜蛋白 (OMP) 和外膜蛋白 膜相关蛋白(OMAP)以避免对异生细胞质的需求 积累。我们以多重方式对一组条形码进行了化学筛选, 基因工程的目标特异性菌株,其中每个必需的 OMP/OMAP 目标基因都已被 通过启动子替换而被击倒。下一代测序用于计数扩增的条形码 测量库中每个突变株对小分子反应的普查。控制低 这些菌株中感兴趣的蛋白质的表达使它们对这些菌株的抑制剂高度敏感。 相应的目标。重要的是,这一策略使我们能够(1)扩大小分子的数量 通过识别小分子来筛选候选者,如果仅针对野生型进行筛选,这些小分子将无法发现 PsA,(2) 将全细胞筛选与基于靶标的发现结合起来,(3) 靶向 功能未知或缺乏高通量检测。使用此方法来实现 9 个基本 OMP/OMAP 目标 在一次筛选中,我们已经确定了针对外膜蛋白 LptD 和 OprL 的候选蛋白 分别是 LPS 运输和细胞膜完整性所必需的。因为这些目标缺乏稳健性 功能分析,我们开发了一个高通量转录组驱动的管道与机器耦合 学习识别和优先考虑极有可能特异性抑制这些目标的分子。我们现在 建议开发具有全新作用机制的热门产品,以引导优化和论证 体内概念证明。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DEBORAH T HUNG其他文献

DEBORAH T HUNG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DEBORAH T HUNG', 18)}}的其他基金

Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
  • 批准号:
    10670196
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
  • 批准号:
    10670186
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
  • 批准号:
    10670154
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
  • 批准号:
    10670185
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
  • 批准号:
    10242000
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
  • 批准号:
    10463692
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
  • 批准号:
    10242006
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
  • 批准号:
    10463687
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
  • 批准号:
    10242002
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
  • 批准号:
    10463686
  • 财政年份:
    2019
  • 资助金额:
    $ 185.21万
  • 项目类别:

相似国自然基金

基于抗生素-AIE探针的细菌胞外囊泡检测新方法的构建及其在血流感染中的应用价值研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
以活性为导向的硫肽类抗生素的衍生及其在口腔细菌感染性疾病中的应用研究
  • 批准号:
    81974495
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于免疫调节发掘有毒动物来源天然多肽抗耐药胞内细菌感染
  • 批准号:
    81872839
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
细菌响应抗生素释放系统的建立及对骨感染病灶的靶向治疗作用研究
  • 批准号:
    81802178
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于Teixobactin的新型抗耐药菌及抗耐药结核病药物研究
  • 批准号:
    81773567
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
  • 批准号:
    10549648
  • 财政年份:
    2023
  • 资助金额:
    $ 185.21万
  • 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
  • 批准号:
    10698829
  • 财政年份:
    2023
  • 资助金额:
    $ 185.21万
  • 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
  • 批准号:
    10653587
  • 财政年份:
    2023
  • 资助金额:
    $ 185.21万
  • 项目类别:
A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
  • 批准号:
    10586250
  • 财政年份:
    2023
  • 资助金额:
    $ 185.21万
  • 项目类别:
Infection-Dependent Vulnerabilities of Gram-negative Bacterial Pathogens
革兰氏阴性细菌病原体的感染依赖性脆弱性
  • 批准号:
    10592676
  • 财政年份:
    2023
  • 资助金额:
    $ 185.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了