Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
基本信息
- 批准号:10670154
- 负责人:
- 金额:$ 649.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-07 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAcinetobacter baumanniiAdjuvantAdvanced DevelopmentAnabolismAnti-Infective AgentsAntibiotic ResistanceAntibioticsBacterial Antibiotic ResistanceBacterial InfectionsBasic ScienceBiochemistryBiologic DevelopmentBiologicalBiological ProductsBiologyBiophysicsBiotechnologyCellsCessation of lifeChemicalsChemistryClinicClinicalClinical Trials DesignCombined Modality TherapyCommunicable DiseasesComputational BiologyDevelopmentDisciplineDrug Delivery SystemsDrug TargetingEngineeringEquilibriumFutureGene ClusterGenerationsGenomic approachGenomicsGoalsHealthHumanIn VitroIndustryInfectionInterventionInvestmentsKlebsiella pneumoniaeLeadLifeMalignant NeoplasmsMarketingMedicalMembraneMembrane ProteinsMicrobiologyMicrofluidicsMiningNatural ProductsNew AgentsPathway interactionsPatientsPenicillinsPharmacologic SubstanceProtein EngineeringProteinsPseudomonas aeruginosaResearch PersonnelResearch Project GrantsResistanceSiteSynthesis ChemistryTechnologyTherapeuticTranslatingantimicrobialbench to bedsidecarbapenem resistanceclinical developmentcombinatorialcommercializationcomputerized toolsdesigndrug resistant pathogeneconomic costemerging pathogenexperiencegenomic platformin vivoinnovationinnovative technologiesmicrobial genomemicrofluidic technologymicroorganismnew chemical entitynext generation sequencingnovelnovel strategiesnovel therapeuticspathogenpathogenic bacteriaprogramsscreeningsmall moleculesmall molecule librariessynergismsynthetic biologytargeted agenttechnology developmenttechnology platformtherapeutic candidatetherapeutic development
项目摘要
Since Alexander Fleming's discovery of penicillin, antibiotics have been arguably the single medical
intervention that has saved more lives than any other. However, this life saving intervention is now being
threatened by the problem of antibiotic resistance that is outpacing the discovery of new antibiotics, resulting in
the WHO and CDC declaring antibiotic resistance as one of the greatest threats to human health. Projections
include the possibility of 10 million deaths per year by 2050 with tremendous impact on the global economy in
the absence of a significant shift in the current antibiotic landscape. Despite important renewed calls for
investment in antibiotic discovery and an encouraging increase of activity and investment in this space, the
pipeline of new antibiotics remains alarmingly sparse, particularly for agents with new mechanisms of action
and that target Gram-negative pathogens in serious infection.
Clearly new agents are needed; however, equally important is the need for novel strategies and
antibiotic discovery platforms that can overcome these barriers and create a pipeline both now and into the
future. Herein, we propose an interdisciplinary center (Center for Innovation to Transform Antibiotic
Discovery; CITADel) that will take on the challenges of antibiotic discovery against the important Gram
negative pathogens Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae
(carbapenem-resistant Enterobactericeae in general) both with the goal of producing new antimicrobial
candidates with new mechanisms of action that can progress into the clinics, and developing
innovative platforms to create a sustainable pipeline of new antibiotic candidates. CITADel will consist of
4 projects and an administrative core that will focus on innovation and synergy.
Novel concepts to be championed include the development of narrow spectrum, combination, or
biological agents, multiplexed target-based whole cell screening using next generation sequencing, massively
high-throughput combinatorial screening using droplet microfluidic technologies, the targeting of outer
membrane essential proteins (to circumvent the need for small molecule intracellular accumulation), leveraging
recent synthetic biology technologies to create small molecule libraries consisting of natural products whose
syntheses are encoded within microbial genomes but to date are untapped, novel pathogen targeting-drug
conjugates, and novel macrocyclization chemistries and protein engineering strategies, with each of these
tackling many of the critical barriers that hinder antibiotic discovery efforts. Importantly, CITADel will uniquely
bring together (1) the complementary expertises of investigators with experience in the development of small
molecules and biological agents to advance the development novel therapeutics; (2) the innovation arising in
academia with the expertise in therapeutic development in biotechnology and pharmaceutical companies; and
(3) clinical infectious disease, regulatory, and commercialization expertise with basic science expertise.
自从亚历山大·弗莱明发现青霉素以来,抗生素可以说是唯一的医疗手段。
比任何其他干预措施都挽救了更多的生命。然而,这种挽救生命的干预措施目前正在
受到抗生素耐药性问题的威胁,该问题的速度超过了新抗生素的发现,导致
世界卫生组织和疾病预防控制中心宣布抗生素耐药性是对人类健康的最大威胁之一。预测
到 2050 年,每年可能有 1000 万人死亡,这对全球经济产生巨大影响
目前的抗生素格局没有发生重大转变。尽管再次发出重要呼吁
对抗生素发现的投资以及该领域活动和投资的令人鼓舞的增加,
新抗生素的研发管线仍然数量稀少,尤其是具有新作用机制的药物
并针对严重感染中的革兰氏阴性病原体。
显然需要新的代理;然而,同样重要的是需要新颖的战略和
抗生素发现平台可以克服这些障碍,并在现在和未来建立管道
未来。在此,我们提议建立一个跨学科中心(抗生素转化创新中心)
发现; CITADel)将迎接针对重要革兰氏菌的抗生素发现的挑战
阴性病原体:铜绿假单胞菌、鲍曼不动杆菌、肺炎克雷伯菌
(一般耐碳青霉烯类肠杆菌科)两者的目标都是生产新的抗菌剂
具有新的行动机制的候选人可以进入临床,并开发
创新平台,创建可持续的新候选抗生素管道。 CITADel 将包括
4 个项目和一个专注于创新和协同的行政核心。
需要倡导的新概念包括开发窄谱、组合或
生物制剂,使用下一代测序进行基于多重目标的全细胞筛选,大规模
使用液滴微流控技术进行高通量组合筛选,靶向外
膜必需蛋白(以避免小分子细胞内积累的需要),利用
最近的合成生物学技术创建了由天然产物组成的小分子库,其
合成物是在微生物基因组中编码的,但迄今为止尚未开发,是新型病原体靶向药物
缀合物,以及新颖的大环化化学和蛋白质工程策略,其中每一个
解决阻碍抗生素发现工作的许多关键障碍。重要的是,CITADel 将以独特的方式
汇集(1)具有小型开发经验的研究人员的互补专业知识
促进新型疗法开发的分子和生物制剂; (2) 创新的产生
具有生物技术和制药公司治疗开发专业知识的学术界;和
(3) 具有基础科学专业知识的临床传染病、监管和商业化专业知识。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategies for in vitro engineering of the translation machinery
- DOI:10.1093/nar/gkz1011
- 发表时间:2020-02-20
- 期刊:
- 影响因子:14.9
- 作者:Hammerling, Michael J.;Kruger, Antje;Jewett, Michael C.
- 通讯作者:Jewett, Michael C.
Multiplexed detection of bacterial nucleic acids using Cas13 in droplet microarrays.
- DOI:10.1093/pnasnexus/pgac021
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Thakku, Sri Gowtham;Ackerman, Cheri M.;Myhrvold, Cameron;Bhattacharyya, Roby P.;Livny, Jonathan;Ma, Peijun;Gomez, Giselle Isabella;Sabeti, Pardis C.;Blainey, Paul C.;Hung, Deborah T.
- 通讯作者:Hung, Deborah T.
Cell-Free Exploration of the Natural Product Chemical Space.
- DOI:10.1002/cbic.202000452
- 发表时间:2021-01-05
- 期刊:
- 影响因子:0
- 作者:Bogart JW;Cabezas MD;Vögeli B;Wong DA;Karim AS;Jewett MC
- 通讯作者:Jewett MC
Increasing cell‐free gene expression yields from linear templates in Escherichia coli and Vibrio natriegens extracts by using DNA‐binding proteins
使用 DNA 结合蛋白提高大肠杆菌和弧菌提取物中线性模板的无细胞基因表达产量
- DOI:10.1002/bit.27538
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Zhu Bo;Gan Rui;Cabezas Maria D.;Kojima Takaaki;Nicol Robert;Jewett Michael C.;Nakano Hideo
- 通讯作者:Nakano Hideo
Integrated genomics and chemical biology herald an era of sophisticated antibacterial discovery, from defining essential genes to target elucidation.
- DOI:10.1016/j.chembiol.2022.04.006
- 发表时间:2022-05-19
- 期刊:
- 影响因子:8.6
- 作者:Warrier, Thulasi;Romano, Keith P.;Clatworthy, Anne E.;Hung, Deborah T.
- 通讯作者:Hung, Deborah T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBORAH T HUNG其他文献
DEBORAH T HUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBORAH T HUNG', 18)}}的其他基金
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
- 批准号:
10670196 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
- 批准号:
10670186 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
- 批准号:
10670185 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
- 批准号:
10242000 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
- 批准号:
10463692 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
- 批准号:
10242006 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
- 批准号:
10463687 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
- 批准号:
10242002 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
- 批准号:
10463688 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
- 批准号:
10463686 - 财政年份:2019
- 资助金额:
$ 649.55万 - 项目类别:
相似国自然基金
鲍曼不动杆菌抵御黄色黏球菌捕食行为的分子机制与生物学意义
- 批准号:32370114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基因ytnP克隆表达及其对鲍曼不动杆菌的群体淬灭作用及机制研究
- 批准号:82360003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
邻氨基苯甲酸群体感应系统调控鲍曼不动杆菌耐药和毒力的分子机制
- 批准号:32300033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗碳青霉烯耐药鲍曼不动杆菌新型BfmR抑制剂的发现与活性研究
- 批准号:82304377
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗CRISPR蛋白抑制CRISPR-Cas系统介导鲍曼不动杆菌耐药和毒力演化机制研究
- 批准号:82373637
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
2023 International Society for Vaccines (ISV) Annual Congress, October 22-25, Lausanne, Switzerland
2023 年国际疫苗协会 (ISV) 年会,10 月 22 日至 25 日,瑞士洛桑
- 批准号:
10754840 - 财政年份:2023
- 资助金额:
$ 649.55万 - 项目类别:
Inhibitors of adaptive efflux mediated resistance in Acinetobacter baumannii
鲍曼不动杆菌适应性外排介导的耐药性抑制剂
- 批准号:
10625029 - 财政年份:2023
- 资助金额:
$ 649.55万 - 项目类别:
The impact of bacteriophage therapy on wound infection dynamics
噬菌体疗法对伤口感染动态的影响
- 批准号:
10467125 - 财政年份:2022
- 资助金额:
$ 649.55万 - 项目类别:
Development of a mechanistically novel synergistic adjuvant to partner with polymyxin antibiotics
开发一种与多粘菌素抗生素配合使用的新型机械协同佐剂
- 批准号:
10481682 - 财政年份:2022
- 资助金额:
$ 649.55万 - 项目类别:
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10708102 - 财政年份:2022
- 资助金额:
$ 649.55万 - 项目类别: