Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
基本信息
- 批准号:10452540
- 负责人:
- 金额:$ 101.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyBolus InfusionCaliforniaCardiacCause of DeathClinicalContrast MediaCoronary heart diseaseDataData AnalysesDiagnosisDiagnosticElectrocardiogramEnsureFeasibility StudiesFinancial compensationGoalsHeartHospitalsImageInstitutional Review BoardsIodineMeasurementMorphologyMotionMyocardialOutcomePatientsPerformancePerfusionPhasePhysicsPhysiologic pulsePreparationProspective StudiesProtocols documentationRadiation Dose UnitResearchRoentgen RaysRotationScanningSystemTechniquesTechnologyTherapeutic InterventionTimeTrainingTranslatingTubeUniversitiesWomanX-Ray Computed Tomographyalgorithm developmentbasecontrast enhancedcoronary computed tomography angiographydeep learningdeep learning algorithmexperienceheart imagingimage reconstructionimaging facilitiesimaging modalityinnovationmennon-invasive imagingprospectivereconstructionstandard of caretemporal measurementtime interval
项目摘要
PROJECT SUMMARY/ABSTRACT
Coronary heart disease (CHD) is the leading cause of death worldwide. An estimated 3.8 million men and 3.4
million women die each year from CHD. Cardiac CT is a safe, accurate, non-invasive imaging modality used for
diagnosing CHD and for planning therapeutic interventions. Cardiac CT exams are still challenging to perform
due to the beating heart and the need to carefully time the scan based on cardiac phase and based on when the
peak iodine contrast enhancement is reached. The overall exam duration and the complexity of performing these
exams (contrasted with limited reimbursement levels) have limited patient access to cardiac CT to academic
hospitals and specialized cardiac imaging centers. As compared to other CT exams, cardiac CT exams require
additional patient preparation time, additional CT scans to track the bolus, and additional contrast agent to avoid
missing the peak enhancement.
The goal of this project is to develop a smart cardiac CT scanner that autonomously determines the optimal
scan time interval without ECG, traditional bolus tracking or timing bolus. Initial results show that it is possible
to extract cardiac gating information from a few CT projection measurements prior to the diagnostic CT scan,
without reconstruction. This is made possible by an innovative combination of fast X-ray tube pulsing and deep
learning raw data analysis. This project builds on GE Research's experience with cardiac CT technologies, deep
learning algorithms and X-ray tube physics, as well as the strong clinical cardiac CT expertise at the University
of California San Diego.
The outcome of this project will be a clinical feasibility study of the autonomous triggering approach, which
has the potential to simplify and increase patient access to cardiac CT, while reducing exam time, reducing con-
trast agent volume, and ensuring robust image quality.
项目摘要/摘要
冠心病(CHD)是全球死亡的主要原因。估计有380万人和3.4
每年有百万妇女死于冠心病。心脏CT是一种安全,准确,非侵入性成像方式
诊断CHD和计划治疗干预措施。心脏CT考试仍然具有挑战性
由于心脏跳动,并且需要根据心脏阶段仔细计时扫描,并根据
达到了峰值对比度增强。整个考试持续时间和执行这些的复杂性
考试(与报销水平有限形成对比)患者对心脏CT的访问有限
医院和专门的心脏成像中心。与其他CT考试相比,心脏CT考试需要
额外的患者准备时间,额外的CT扫描以跟踪推注,并避免其他对比剂
缺少峰值增强。
该项目的目的是开发自动确定最佳的智能心脏CT扫描仪
扫描时间间隔,无心电图,传统的推注跟踪或定时推注。初始结果表明这是可能的
在诊断CT扫描之前,要从几个CT投影测量中提取心脏门控信息,
没有重建。快速X射线管脉冲和深度的创新组合使这成为可能
学习原始数据分析。该项目基于GE Research在心脏CT技术的经验,深处
学习算法和X射线管物理,以及大学的强大临床心脏CT专业知识
加利福尼亚圣地亚哥。
该项目的结果将是对自主触发方法的临床可行性研究,
有可能简化和增加患者进入心脏CT的机会,同时减少考试时间,从而减少。
Trast代理体积,并确保强大的图像质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruno De Man其他文献
Bruno De Man的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruno De Man', 18)}}的其他基金
Constrained Disentanglement (CODE) Network for CT Metal Artifact Reduction in Radiation Therapy
用于减少放射治疗中 CT 金属伪影的约束解缠结 (CODE) 网络
- 批准号:
10184493 - 财政年份:2021
- 资助金额:
$ 101.54万 - 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
- 批准号:
10674706 - 财政年份:2020
- 资助金额:
$ 101.54万 - 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
- 批准号:
10029731 - 财政年份:2020
- 资助金额:
$ 101.54万 - 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
- 批准号:
10227088 - 财政年份:2020
- 资助金额:
$ 101.54万 - 项目类别:
Open-access X-ray and CT simulation toolkit for research in cancer imaging and dosimetry
用于癌症成像和剂量测定研究的开放式 X 射线和 CT 模拟工具包
- 批准号:
9913492 - 财政年份:2019
- 资助金额:
$ 101.54万 - 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
- 批准号:
7792699 - 财政年份:2010
- 资助金额:
$ 101.54万 - 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
- 批准号:
8210901 - 财政年份:2010
- 资助金额:
$ 101.54万 - 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
- 批准号:
8706645 - 财政年份:2010
- 资助金额:
$ 101.54万 - 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
- 批准号:
8014879 - 财政年份:2010
- 资助金额:
$ 101.54万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and Validation of an Artificial Intelligence-Based Clinical Decision Support Tool for Videofluoroscopic Swallowing Studies
用于视频透视吞咽研究的基于人工智能的临床决策支持工具的开发和验证
- 批准号:
10511906 - 财政年份:2022
- 资助金额:
$ 101.54万 - 项目类别:
Development and Validation of an Artificial Intelligence-Based Clinical Decision Support Tool for Videofluoroscopic Swallowing Studies
用于视频透视吞咽研究的基于人工智能的临床决策支持工具的开发和验证
- 批准号:
10679097 - 财政年份:2022
- 资助金额:
$ 101.54万 - 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
- 批准号:
10674706 - 财政年份:2020
- 资助金额:
$ 101.54万 - 项目类别:
Intranasal delivery of neural stem cells alone or in combination with environmental enrichment as a potential therapy for experimental TBI
单独鼻内递送神经干细胞或与环境富集相结合作为实验性 TBI 的潜在疗法
- 批准号:
10265107 - 财政年份:2020
- 资助金额:
$ 101.54万 - 项目类别:
Non-Invasive Wideband Radiometer for Accurate Core Temperature Monitoring
用于精确监测核心温度的非侵入式宽带辐射计
- 批准号:
10194492 - 财政年份:2020
- 资助金额:
$ 101.54万 - 项目类别: