Targeting Atr to promote regeneration and functional recovery after neural injury

靶向 Atr 促进神经损伤后的再生和功能恢复

基本信息

  • 批准号:
    10450101
  • 负责人:
  • 金额:
    $ 37.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Failure of damaged axons to regenerate and reestablish functional circuitry is the primary cause that results in  permanent  disabilities  after  central  nervous  system  (CNS)  injury,  and  is  also  a  major  factor  contributing  to  the  non-­reversible neurologic dysfunction seen in neurodegenerative diseases. Of approximately 1.9% of the U.S.  population  with  paralysis,  some  1,275,000  are  paralyzed  as  the  result  of  a  spinal  cord  injury  (SCI).  SCIs  frequently result in at least some incurable impairment even with the best possible treatment and patients with  complete  injuries  recover  very  little  lost  function.  Under  pathological  situations  such  as  multiple  sclerosis,  the  second  most  common  neurological  disorder  leading  to  disability  in  young  adults,  failure  of  damaged  axons  to  regenerate contributes to neurologic abnormalities. Despite ample efforts in the past few decades, which have  led to the discoveries of extracellular factors that impede, and intrinsic pathways in mature neurons that diminish  the  regenerative  capacity  of  axons,  effective  therapies  have  not  emerged  given  the  fact  that  simply  removing  those  inhibitory  cues  confers  limited  regrowth  and  that  our  understanding  of  neurons’  intrinsic  regenerative  properties  still  remains  incomplete,  indicating  that  additional  regulatory  machinery  must  be  in  place.  This  highlights the urgent need to identify novel molecular targets for therapy.  With the goal to find novel factors essential for CNS axon regeneration, we have utilized a Drosophila sensory  neuron  injury  model  that  resembles  mammalian  injury  at  the  phenotypical  and  molecular  level  in  a  candidate-­ based genetic screen, and identified the Piezo-­Atr (Ataxia telangiectasia and Rad3 related) pathway as inhibitors  for axon regeneration. This proposal aims to determine the cellular and molecular mechanisms underlying Piezo-­ Atr’s function in flies and to elucidate the role of the mammalian Atr after peripheral or spinal cord injury. Atr is  an  essential  component  of  the  DNA  damage  response  and  also  responds  to  mechanical  force.  This  pathway  has never been implicated in axon regeneration, and our study will thus provide exciting insights into the potential  links  among  axon  injury,  DNA  damage  response,  mechanosensation  and  regeneration,  and  will  open  new  avenues  of  research  for  regeneration  and  spinal  cord  injury.  Taking  advantage  of  the  power  of  fly  genetics  to identify novel factors and the mammalian injury model, this strategy offers a unique opportunity to gain insights  into the repertoire of regeneration regulators, which may drive novel treatments to promote recovery in patients  with neural injury or neurodegenerative diseases.
受损轴突无法再生和恢复功能电路的失败是导致的主要原因 中枢神经系统(CNS)损伤后的永久残疾,也是导致神经退行性疾病中非可逆性神经功能障碍的主要因素。美国约1.9% 瘫痪的人口,由于脊髓损伤(SCI),大约1,275,000人瘫痪。 Scis 即使有最佳的潜在治疗和患者 完全伤害恢复了很少的功能。在多发性硬化症等病理情况下, 第二个最常见的神经系统疾病导致年轻人混乱,损伤轴突失败 再生有助于神经系统异常。尽管在过去的几十年中,尽管有足够的努力 导致障碍细胞外因素的发现,以及成熟神经元中的内在途径 轴突的再生能力,有效的疗法尚未出现 那些抑制性提示赋予了限制的再生,并且我们对神经元内在再生的理解 属性仍然不完整,表明必须有其他监管机械。  这 强调迫切需要鉴定新的分子靶标的治疗。 为了找到CNS轴突再生必不可少的新因素,我们使用了果蝇感觉 神经元损伤模型,类似于在表型和分子水平的哺乳动物损伤中 基于遗传筛选,并确定了压电 - ATR(共济失调telangiectia和rad3相关)作为抑制剂 用于轴突再生。该提案旨在确定压电的基础的细胞和分子机制 ATR在苍蝇中的功能,并阐明外周或脊髓损伤后哺乳动物ATR的作用。 ATR是 DNA损伤响应的重要组成部分,也响应机械力。这条路 在轴突再生中从未暗示过,因此我们的研究将为潜力提供令人兴奋的见解 轴突损伤,DNA损伤响应,机制和再生之间的联系,并将开放新的 再生研究和脊髓损伤的研究途径。利用蝇遗传学的力量来识别新因素和哺乳动物损伤模型,该策略提供了一个独特的机会来获得见解 进入再生调节剂的曲目,这可能会驱动新的治疗方法以促进患者的康复 神经损伤或神经退行性疾病。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-canonical role of the ATR pathway in axon regeneration as a mechanosensitive brake.
  • DOI:
    10.4103/1673-5374.335807
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Li, Feng;Song, Yuanquan
  • 通讯作者:
    Song, Yuanquan
Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.
  • DOI:
    10.7554/elife.57395
  • 发表时间:
    2020-10-06
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Wang Q;Fan H;Li F;Skeeters SS;Krishnamurthy VV;Song Y;Zhang K
  • 通讯作者:
    Zhang K
Mechanosensitive Ion Channels, Axonal Growth, and Regeneration.
  • DOI:
    10.1177/10738584221088575
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Miles, Leann;Powell, Jackson;Kozak, Casey;Song, Yuanquan
  • 通讯作者:
    Song, Yuanquan
Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila.
  • DOI:
    10.1038/s41467-023-42306-2
  • 发表时间:
    2023-10-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Trombley, Shannon;Powell, Jackson;Guttipatti, Pavithran;Matamoros, Andrew;Lin, Xiaohui;O'Harrow, Tristan;Steinschaden, Tobias;Miles, Leann;Wang, Qin;Wang, Shuchao;Qiu, Jingyun;Li, Qingyang;Li, Feng;Song, Yuanquan
  • 通讯作者:
    Song, Yuanquan
Drosophila Laser Axotomy Injury Model to Investigate RNA Repair and Splicing in Axon Regeneration.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanquan Song其他文献

Yuanquan Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanquan Song', 18)}}的其他基金

Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
  • 批准号:
    10656678
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
  • 批准号:
    10260386
  • 财政年份:
    2018
  • 资助金额:
    $ 37.63万
  • 项目类别:
Mechanistic studies of novel factors regulating axon regeneration in the PNS/CNS
调节 PNS/CNS 轴突再生的新因子的机制研究
  • 批准号:
    8753538
  • 财政年份:
    2014
  • 资助金额:
    $ 37.63万
  • 项目类别:

相似国自然基金

面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
  • 批准号:
    62174130
  • 批准年份:
    2021
  • 资助金额:
    60.00 万元
  • 项目类别:
    面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
  • 批准号:
    81973967
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
  • 批准号:
    81801219
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
  • 批准号:
    81171040
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
  • 批准号:
    10752553
  • 财政年份:
    2024
  • 资助金额:
    $ 37.63万
  • 项目类别:
Mechanisms of compartmentalized plasticity in learning and memory
学习和记忆的区隔可塑性机制
  • 批准号:
    10522519
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
Genetic Analyses of Dendrite Morphogenesis in Caenorhabditis Elegans
秀丽隐杆线虫树突形态发生的遗传分析
  • 批准号:
    10736702
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
Retinal Ganglion Cell Signaling Regulated By Intrinsic Reactive Oxygen Species
视网膜神经节细胞信号传导受内在活性氧的调节
  • 批准号:
    10588039
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
Circuit Mechanism of Pheromone Processing and Innate Behavior
信息素加工和先天行为的回路机制
  • 批准号:
    10601689
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了