Targeting Atr to promote regeneration and functional recovery after neural injury

靶向 Atr 促进神经损伤后的再生和功能恢复

基本信息

  • 批准号:
    10450101
  • 负责人:
  • 金额:
    $ 37.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Failure of damaged axons to regenerate and reestablish functional circuitry is the primary cause that results in  permanent  disabilities  after  central  nervous  system  (CNS)  injury,  and  is  also  a  major  factor  contributing  to  the  non-­reversible neurologic dysfunction seen in neurodegenerative diseases. Of approximately 1.9% of the U.S.  population  with  paralysis,  some  1,275,000  are  paralyzed  as  the  result  of  a  spinal  cord  injury  (SCI).  SCIs  frequently result in at least some incurable impairment even with the best possible treatment and patients with  complete  injuries  recover  very  little  lost  function.  Under  pathological  situations  such  as  multiple  sclerosis,  the  second  most  common  neurological  disorder  leading  to  disability  in  young  adults,  failure  of  damaged  axons  to  regenerate contributes to neurologic abnormalities. Despite ample efforts in the past few decades, which have  led to the discoveries of extracellular factors that impede, and intrinsic pathways in mature neurons that diminish  the  regenerative  capacity  of  axons,  effective  therapies  have  not  emerged  given  the  fact  that  simply  removing  those  inhibitory  cues  confers  limited  regrowth  and  that  our  understanding  of  neurons’  intrinsic  regenerative  properties  still  remains  incomplete,  indicating  that  additional  regulatory  machinery  must  be  in  place.  This  highlights the urgent need to identify novel molecular targets for therapy.  With the goal to find novel factors essential for CNS axon regeneration, we have utilized a Drosophila sensory  neuron  injury  model  that  resembles  mammalian  injury  at  the  phenotypical  and  molecular  level  in  a  candidate-­ based genetic screen, and identified the Piezo-­Atr (Ataxia telangiectasia and Rad3 related) pathway as inhibitors  for axon regeneration. This proposal aims to determine the cellular and molecular mechanisms underlying Piezo-­ Atr’s function in flies and to elucidate the role of the mammalian Atr after peripheral or spinal cord injury. Atr is  an  essential  component  of  the  DNA  damage  response  and  also  responds  to  mechanical  force.  This  pathway  has never been implicated in axon regeneration, and our study will thus provide exciting insights into the potential  links  among  axon  injury,  DNA  damage  response,  mechanosensation  and  regeneration,  and  will  open  new  avenues  of  research  for  regeneration  and  spinal  cord  injury.  Taking  advantage  of  the  power  of  fly  genetics  to identify novel factors and the mammalian injury model, this strategy offers a unique opportunity to gain insights  into the repertoire of regeneration regulators, which may drive novel treatments to promote recovery in patients  with neural injury or neurodegenerative diseases.
受损轴突无法再生和重建功能电路是导致 中枢神经系统 (CNS) 损伤后造成永久性残疾,也是导致神经退行性疾病中不可逆神经功能障碍的一个主要因素,约占美国人口的 1.9%。 在瘫痪人群中,约有 1,275,000 人因脊髓损伤 (SCI) 而瘫痪。 即使采用最好的治疗方法,经常会导致至少一些无法治愈的损伤,并且患有以下疾病的患者 在多发性硬化症等病理情况下,完全损伤恢复的功能很少。 第二个最常见的神经系统疾病导致年轻人残疾,受损的轴突无法发挥作用 再生会导致神经异常。尽管在过去的几十年里做出了巨大的努力,但确实如此。 导致发现阻碍的细胞外因素,以及削弱成熟神经元的内在途径 轴突的再生能力,鉴于简单地去除轴突的再生能力,尚未出现有效的治疗方法 这些抑制信号导致有限的再生,并且我们对神经元内在再生的理解 财产仍然不完整,这表明必须建立额外的监管机制。 强调迫切需要确定新的治疗分子靶点。 为了找到中枢神经系统轴突再生所必需的新因素,我们利用了果蝇的感觉器官。 候选神经元损伤模型在表型和分子水平上类似于哺乳动物损伤 基于遗传筛选,并确定 Piezo-Atr(共济失调毛细血管扩张和 Rad3 相关)途径作为抑制剂 该提案旨在确定压电的细胞和分子机制。 Atr 在果蝇中的功能,并阐明哺乳动物 Atr 在外周或脊髓损伤后的作用。 DNA 损伤反应的重要组成部分,也对机械力做出反应。 从未涉及轴突再生,因此我们的研究将为潜在的提供令人兴奋的见解 轴突损伤、DNA损伤反应、机械感觉和再生之间的联系,并将开辟新的领域 利用果蝇遗传学的力量来识别新因素和哺乳动物损伤模型,该策略提供了获得见解的独特机会。 纳入再生调节剂的库中,这可能会推动新的治疗方法以促进患者的康复 患有神经损伤或神经退行性疾病。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-canonical role of the ATR pathway in axon regeneration as a mechanosensitive brake.
  • DOI:
    10.4103/1673-5374.335807
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Li, Feng;Song, Yuanquan
  • 通讯作者:
    Song, Yuanquan
Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.
  • DOI:
    10.7554/elife.57395
  • 发表时间:
    2020-10-06
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Wang Q;Fan H;Li F;Skeeters SS;Krishnamurthy VV;Song Y;Zhang K
  • 通讯作者:
    Zhang K
Mechanosensitive Ion Channels, Axonal Growth, and Regeneration.
  • DOI:
    10.1177/10738584221088575
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Miles, Leann;Powell, Jackson;Kozak, Casey;Song, Yuanquan
  • 通讯作者:
    Song, Yuanquan
Drosophila Laser Axotomy Injury Model to Investigate RNA Repair and Splicing in Axon Regeneration.
Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila.
  • DOI:
    10.1038/s41467-023-42306-2
  • 发表时间:
    2023-10-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Trombley, Shannon;Powell, Jackson;Guttipatti, Pavithran;Matamoros, Andrew;Lin, Xiaohui;O'Harrow, Tristan;Steinschaden, Tobias;Miles, Leann;Wang, Qin;Wang, Shuchao;Qiu, Jingyun;Li, Qingyang;Li, Feng;Song, Yuanquan
  • 通讯作者:
    Song, Yuanquan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanquan Song其他文献

Yuanquan Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanquan Song', 18)}}的其他基金

Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
  • 批准号:
    10656678
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
  • 批准号:
    10260386
  • 财政年份:
    2018
  • 资助金额:
    $ 37.63万
  • 项目类别:
Mechanistic studies of novel factors regulating axon regeneration in the PNS/CNS
调节 PNS/CNS 轴突再生的新因子的机制研究
  • 批准号:
    8753538
  • 财政年份:
    2014
  • 资助金额:
    $ 37.63万
  • 项目类别:

相似国自然基金

面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
  • 批准号:
    81973967
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
  • 批准号:
    81801219
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
  • 批准号:
    81171040
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
  • 批准号:
    10752553
  • 财政年份:
    2024
  • 资助金额:
    $ 37.63万
  • 项目类别:
Mechanisms of compartmentalized plasticity in learning and memory
学习和记忆的区隔可塑性机制
  • 批准号:
    10522519
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
Molecular and functional characterization of olfactory pathways in the arbovirus vector mosquito Aedes aegypti
虫媒病毒载体蚊子埃及伊蚊嗅觉通路的分子和功能特征
  • 批准号:
    10638710
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
  • 批准号:
    10677932
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
Energizing and Protecting Axons Through Metabolic Coupling to Schwann Cells
通过与雪旺细胞的代谢耦合来激活和保护轴突
  • 批准号:
    10647707
  • 财政年份:
    2023
  • 资助金额:
    $ 37.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了