Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
基本信息
- 批准号:10656678
- 负责人:
- 金额:$ 62.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP Citrate (pro-S)-LyaseAcuteAdultAdverse effectsAfferent NeuronsAgonistAstrocytesAxonBehavioralBehavioral AssayBindingBinding SitesBiological AssayCellsCentral Nervous SystemChronicCicatrixCitric Acid CycleClinicalCorticospinal TractsCoupledCouplingCyclic AMPDataDiseaseEnvironmentEnzymesEvolutionExhibitsFunctional RegenerationGTP-Binding ProteinsGenesGlycolysisGoalsGrowthGuanine NucleotidesHypertrophyImpairmentIn SituInflammatoryInjectionsInjuryKnock-outLactate DehydrogenaseLarvaMammalsMeasuresMediatingMetabolicMetabolic PathwayMetabolismModelingMolecular TargetMusMutateNatural regenerationNerve RegenerationNervous System TraumaNeurodegenerative DisordersNeurogliaNeurologic DeficitNeuronsParalysedPathway interactionsPeripheralPhasePopulationProductionPublic HealthPublishingReceptor ActivationRecoveryRecovery of FunctionRefractoryRegenerative MedicineRegenerative capacityReportingRoleSensorySignal TransductionSiteSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSpinal cord injuryStem cell transplantStructureTestingTissue PreservationTranslatingUp-RegulationWorkaxon injuryaxon regenerationcentral nervous system injurydata miningdifferential expressionexperimental studyflyinsightmass spectrometric imagingmetabolomicsmotor disorderneonatal miceneonatenerve injurynervous system disorderneuron regenerationnoveloverexpressionpharmacologicpreventprogenitorreceptorreceptor functionregenerativeregenerative therapyrepairedresponsetargeted treatmenttherapeutic targettransdifferentiationtranslational potential
项目摘要
PROJECT SUMMARY
Neuronal or axonal damage in the central nervous system (CNS), caused by injury or diseases, is irreversible
and may lead to persistent neurological deficits. Spinal cord injury (SCI) often causes severe sensory and motor
dysfunction and paralysis. Of approximately 1.9% of the U.S. population living with paralysis, over 1,275,000 are
paralyzed as the result of SCI. Currently, there is still no cure for the injured spinal cord itself, emphasizing the
desperate need to identify novel pathways for targeted therapy.
Regarded as the holy grail in regenerative medicine, achieving axon regeneration and functional recovery after
CNS injury or in neurodegenerative diseases remains a daunting task. The inability of CNS axons to regenerate
after injury is attributed to the reduced intrinsic growth capacity of neurons and the inhibitory milieu largely
constituted by the reactive glial cells. It is conventionally thought that the structural formation of glial scar and its
upregulation of the repulsive CSPGs are the main culprit leading to stalled regrowth. However, accumulating
evidence in the past decade has demonstrated that preventing astroglial scar formation following CNS injury
does not result in increased regrowth. It is proposed that glial scar is important in preserving tissue integrity and
mitigating further inflammatory damage. Glial scar may have beneficial effects during the acute phase of injury,
but prevents axon regrowth in the chronic or later stages. In our latest work, via glia-specific metabolic
reprogramming, we succeeded in mitigating their adverse effects while enriching their promotive functions. We
demonstrated that glial reprogramming enhances glial glycolysis, and the production and release of metabolites
– lactate and L-2HG, which act through neuronal GABABRs to boost axon regeneration. However, major gaps
remain: are lactate and L-2HG the only pro-regeneration metabolites; do anti-regeneration metabolites also exist;
do glia subtypes behave similarly after metabolic reprogramming. Our published work allows us to ask the
essential question: does metabolic status dictate glia’s ability to promote or inhibit CNS axon regeneration? This
would have a fundamental impact on our understanding of axon regeneration, as it applies to all species across
the evolution spectrum. An equally intriguing question is: does the metabolic status differ between regeneration
competent and incompetent CNS neurons? Our proposal aims to answer these questions, and test our
hypothesis that glial and neuronal metabolic status governs the regeneration capacity of CNS neurons.
Although various strategies to boost the neuronal intrinsic regenerative ability, to remove the extrinsic inhibitory
factors such as CSPGs, to transdifferentiate glia into neurons, or to transplant stem cells into CNS have been
reported, none of them have translated into clinical use. There is still a pressing need for new concepts to
promote CNS axon regeneration. Our pilot results demonstrate that the state of glial cells that promotes axon
regeneration can be achieved by reprogramming. This project aims to uncover metabolic enzymes as therapeutic
targets, and metabolites or their derivatives as potential pharmacological agents for treating CNS injury.
项目摘要
受伤或疾病引起的中枢神经系统(CNS)中的神经元或轴突损伤是不可逆的
并可能导致持续的神经系统缺陷。脊髓损伤(SCI)通常会引起严重的感觉和运动
功能障碍和麻痹。大约1.9%的美国人口瘫痪,超过1,275,000
SCI的结果瘫痪。目前,仍无法治愈受伤的脊髓本身,强调
迫切需要确定针对性治疗的新途径。
被视为再生医学中的圣杯,在
中枢神经系统损伤或神经退行性疾病仍然是一项艰巨的任务。中枢神经系统轴突无法再生
受伤后,归因于神经元和抑制环境的内在生长能力降低。
由反应性神经胶质细胞组成。通常认为神经胶质疤痕及其的结构形成
排斥CSPG的上调是导致遗憾停滞的主要罪魁祸首。但是,积累
过去十年中的证据表明,CNS受伤后防止星形胶质疤痕形成
不会导致改革增加。有人提出,神经胶质疤痕在保持组织完整性和
减轻进一步的炎症损害。神经胶质疤痕在急性损伤期内可能具有有益的作用,
但是可以防止慢性或更高阶段的轴突改革。在我们的最新作品中,通过Glia特异性代谢
重新编程,我们成功地减轻了他们的不良影响,同时富含其晋升功能。我们
证明神经胶质重编程可增强神经胶质糖酵解,并产生和释放代谢物
- 乳酸和L-2HG,通过神经元Gababrs起作用以增强轴突再生。但是,主要差距
剩余:是鞋底和L-2HG是唯一的促进代谢物;也存在抗再生代谢物;
代谢重编程后,请胶质亚型的表现类似。我们发表的工作使我们能够问
基本问题:代谢状态是否决定了Glia促进或抑制CNS轴突再生的能力?这
将对我们对轴突再生的理解产生根本性的影响,因为它适用于各地的所有物种
进化频谱。同样有趣的问题是:再生之间的代谢状态差异是否存在
胜任和无能的CNS神经元?我们的建议旨在回答这些问题,并测试我们
神经胶质和神经元代谢状态控制CNS神经元的再生能力的假设。
尽管各种策略来增强神经元内固有的再生能力,但可以消除外部抑制作用
诸如CSPG,将神经胶质分解为神经元或移植干细胞中的因素已经是
报道说,它们都没有转化为临床用途。仍然需要新概念来
促进CNS轴突再生。我们的试点结果表明,促进轴突的神经胶质细胞状态
可以通过重新编程来实现再生。该项目旨在发现代谢酶作为治疗
靶标,代谢物或其衍生物作为治疗中枢神经系统损伤的潜在药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanquan Song其他文献
Yuanquan Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanquan Song', 18)}}的其他基金
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
- 批准号:
10260386 - 财政年份:2018
- 资助金额:
$ 62.59万 - 项目类别:
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
- 批准号:
10450101 - 财政年份:2018
- 资助金额:
$ 62.59万 - 项目类别:
Mechanistic studies of novel factors regulating axon regeneration in the PNS/CNS
调节 PNS/CNS 轴突再生的新因子的机制研究
- 批准号:
8753538 - 财政年份:2014
- 资助金额:
$ 62.59万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Endothelial Instruction of Macrophage Fate in Inflammatory Lung Injury
炎症性肺损伤中巨噬细胞命运的内皮指令
- 批准号:
10491076 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Metabolic Rewiring of the Heart Through Reductive Carboxylation
通过还原羧化重塑心脏的代谢
- 批准号:
10427459 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Endothelial Instruction of Macrophage Fate in Inflammatory Lung Injury
炎症性肺损伤中巨噬细胞命运的内皮指令
- 批准号:
10170865 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Endothelial Instruction of Macrophage Fate in Inflammatory Lung Injury
炎症性肺损伤中巨噬细胞命运的内皮指令
- 批准号:
10701931 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Metabolic Rewiring of the Heart Through Reductive Carboxylation
通过还原羧化重塑心脏的代谢
- 批准号:
10617325 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别: