Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
基本信息
- 批准号:10656678
- 负责人:
- 金额:$ 62.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP Citrate (pro-S)-LyaseAcuteAdultAdverse effectsAfferent NeuronsAgonistAstrocytesAxonBehavioralBehavioral AssayBindingBinding SitesBiological AssayCellsCentral Nervous SystemChronicCicatrixCitric Acid CycleClinicalCorticospinal TractsCoupledCouplingCyclic AMPDataDiseaseEnvironmentEnzymesEvolutionExhibitsFunctional RegenerationGTP-Binding ProteinsGenesGlycolysisGoalsGrowthGuanine NucleotidesHypertrophyImpairmentIn SituInflammatoryInjectionsInjuryKnock-outLactate DehydrogenaseLarvaMammalsMeasuresMediatingMetabolicMetabolic PathwayMetabolismModelingMolecular TargetMusMutateNatural regenerationNerve RegenerationNervous System TraumaNeurodegenerative DisordersNeurogliaNeurologic DeficitNeuronsParalysedPathway interactionsPeripheralPhasePopulationProductionPublic HealthPublishingReceptor ActivationRecoveryRecovery of FunctionRefractoryRegenerative MedicineRegenerative capacityReportingRoleSensorySignal TransductionSiteSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSpinal cord injuryStem cell transplantStructureTestingTissue PreservationTranslatingUp-RegulationWorkaxon injuryaxon regenerationcentral nervous system injurydata miningdifferential expressionexperimental studyflyinsightmass spectrometric imagingmetabolomicsmotor disorderneonatal miceneonatenerve injurynervous system disorderneuron regenerationnoveloverexpressionpharmacologicpreventprogenitorreceptorreceptor functionregenerativeregenerative therapyrepairedresponsetargeted treatmenttherapeutic targettransdifferentiationtranslational potential
项目摘要
PROJECT SUMMARY
Neuronal or axonal damage in the central nervous system (CNS), caused by injury or diseases, is irreversible
and may lead to persistent neurological deficits. Spinal cord injury (SCI) often causes severe sensory and motor
dysfunction and paralysis. Of approximately 1.9% of the U.S. population living with paralysis, over 1,275,000 are
paralyzed as the result of SCI. Currently, there is still no cure for the injured spinal cord itself, emphasizing the
desperate need to identify novel pathways for targeted therapy.
Regarded as the holy grail in regenerative medicine, achieving axon regeneration and functional recovery after
CNS injury or in neurodegenerative diseases remains a daunting task. The inability of CNS axons to regenerate
after injury is attributed to the reduced intrinsic growth capacity of neurons and the inhibitory milieu largely
constituted by the reactive glial cells. It is conventionally thought that the structural formation of glial scar and its
upregulation of the repulsive CSPGs are the main culprit leading to stalled regrowth. However, accumulating
evidence in the past decade has demonstrated that preventing astroglial scar formation following CNS injury
does not result in increased regrowth. It is proposed that glial scar is important in preserving tissue integrity and
mitigating further inflammatory damage. Glial scar may have beneficial effects during the acute phase of injury,
but prevents axon regrowth in the chronic or later stages. In our latest work, via glia-specific metabolic
reprogramming, we succeeded in mitigating their adverse effects while enriching their promotive functions. We
demonstrated that glial reprogramming enhances glial glycolysis, and the production and release of metabolites
– lactate and L-2HG, which act through neuronal GABABRs to boost axon regeneration. However, major gaps
remain: are lactate and L-2HG the only pro-regeneration metabolites; do anti-regeneration metabolites also exist;
do glia subtypes behave similarly after metabolic reprogramming. Our published work allows us to ask the
essential question: does metabolic status dictate glia’s ability to promote or inhibit CNS axon regeneration? This
would have a fundamental impact on our understanding of axon regeneration, as it applies to all species across
the evolution spectrum. An equally intriguing question is: does the metabolic status differ between regeneration
competent and incompetent CNS neurons? Our proposal aims to answer these questions, and test our
hypothesis that glial and neuronal metabolic status governs the regeneration capacity of CNS neurons.
Although various strategies to boost the neuronal intrinsic regenerative ability, to remove the extrinsic inhibitory
factors such as CSPGs, to transdifferentiate glia into neurons, or to transplant stem cells into CNS have been
reported, none of them have translated into clinical use. There is still a pressing need for new concepts to
promote CNS axon regeneration. Our pilot results demonstrate that the state of glial cells that promotes axon
regeneration can be achieved by reprogramming. This project aims to uncover metabolic enzymes as therapeutic
targets, and metabolites or their derivatives as potential pharmacological agents for treating CNS injury.
项目概要
由损伤或疾病引起的中枢神经系统 (CNS) 神经元或轴突损伤是不可逆的
并可能导致持续性神经损伤(SCI),通常会导致严重的感觉和运动障碍。
大约 1.9% 的美国人口患有瘫痪,其中超过 1,275,000 人患有瘫痪。
因 SCI 导致瘫痪,目前尚无治愈脊髓损伤的方法。
迫切需要确定靶向治疗的新途径。
被视为再生医学的圣杯,术后实现轴突再生和功能恢复
中枢神经系统损伤或神经退行性疾病仍然是一项艰巨的任务中枢神经系统轴突无法再生。
损伤后的损伤主要归因于神经元内在生长能力和抑制环境的降低
传统上认为胶质疤痕的结构形成与其有关。
排斥性 CSPG 的上调是导致再生停滞的主要原因。
过去十年的证据表明,预防中枢神经系统损伤后星形胶质细胞疤痕的形成
不会导致再生增加,有人认为神经胶质疤痕对于保持组织完整性很重要。
减轻进一步的炎症损伤在损伤的急性期可能具有有益的作用,
但在我们最新的工作中,通过神经胶质细胞特异性代谢来阻止轴突的再生。
通过重新编程,我们成功地减轻了它们的不利影响,同时丰富了它们的促进功能。
证明神经胶质重编程增强神经胶质糖酵解以及代谢物的产生和释放
– 乳酸和 L-2HG,通过神经元 GABABR 发挥作用,促进轴突再生。
仍然:乳酸和 L-2HG 是唯一的促再生代谢物吗?还存在抗再生代谢物吗?
代谢重编程后神经胶质亚型的行为是否相似?我们发表的工作让我们可以问:
基本问题:代谢状态是否决定神经胶质细胞促进或抑制中枢神经系统轴突再生的能力?
将对我们对轴突再生的理解产生根本性影响,因为它适用于所有物种
一个同样有趣的问题是:再生之间的代谢状态是否有所不同。
有能力和无能力的 CNS 神经元?我们的提案旨在回答这些问题,并测试我们的能力。
假设神经胶质和神经元代谢状态控制中枢神经系统神经元的再生能力。
尽管有各种策略来增强神经元内在的再生能力,以消除外在的抑制
诸如CSPGs等因子,将神经胶质细胞转分化为神经元,或将干细胞移植到中枢神经系统中
据报道,它们都还没有转化为临床应用,仍然迫切需要新的概念。
促进中枢神经系统轴突再生。我们的试验结果表明,神经胶质细胞的状态可促进轴突再生。
再生可以通过重新编程来实现,该项目旨在揭示代谢酶的治疗作用。
靶点、代谢物或其衍生物作为治疗中枢神经系统损伤的潜在药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanquan Song其他文献
Yuanquan Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanquan Song', 18)}}的其他基金
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
- 批准号:
10260386 - 财政年份:2018
- 资助金额:
$ 62.59万 - 项目类别:
Targeting Atr to promote regeneration and functional recovery after neural injury
靶向 Atr 促进神经损伤后的再生和功能恢复
- 批准号:
10450101 - 财政年份:2018
- 资助金额:
$ 62.59万 - 项目类别:
Mechanistic studies of novel factors regulating axon regeneration in the PNS/CNS
调节 PNS/CNS 轴突再生的新因子的机制研究
- 批准号:
8753538 - 财政年份:2014
- 资助金额:
$ 62.59万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Endothelial Instruction of Macrophage Fate in Inflammatory Lung Injury
炎症性肺损伤中巨噬细胞命运的内皮指令
- 批准号:
10491076 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Metabolic Rewiring of the Heart Through Reductive Carboxylation
通过还原羧化重塑心脏的代谢
- 批准号:
10427459 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Endothelial Instruction of Macrophage Fate in Inflammatory Lung Injury
炎症性肺损伤中巨噬细胞命运的内皮指令
- 批准号:
10170865 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Endothelial Instruction of Macrophage Fate in Inflammatory Lung Injury
炎症性肺损伤中巨噬细胞命运的内皮指令
- 批准号:
10701931 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别:
Metabolic Rewiring of the Heart Through Reductive Carboxylation
通过还原羧化重塑心脏的代谢
- 批准号:
10617325 - 财政年份:2021
- 资助金额:
$ 62.59万 - 项目类别: