Reconstructing and deconstructing intracellular signaling at the membrane-cytosol interface
重建和解构膜-细胞质界面的细胞内信号传导
基本信息
- 批准号:10449754
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAwardBenchmarkingBiochemicalBiological AssayBiological ModelsBiophysicsBuffersCell ExtractsCell NucleusCell membraneCell modelCellsCollaborationsComparative StudyComplementComplexCoupledCouplingCuesCytoplasmic ProteinCytosolDataDepositionDevelopmentDiffusionDiseaseEffectivenessEgg PreservationEnvironmentEpidermal Growth Factor ReceptorEventFacultyFeedbackFluorescence MicroscopyGeometryGoalsGuanosine Triphosphate PhosphohydrolasesHealthImageIndividualKineticsLateralLightLiquid substanceMAP Kinase GeneMalignant NeoplasmsMapsMembraneMembrane ProteinsMentorsMentorshipMethodsMicroscopyMolecularNuclearPathway interactionsPharmaceutical PreparationsPhysical condensationPrincipal InvestigatorProblem SolvingPropertyProteinsProtocols documentationReactionReceptor Protein-Tyrosine KinasesReceptor SignalingRegulationResearchRoleSideSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSpeedSystemSystems BiologyTestingTherapeuticTimeTrainingUniversitiesXenopusXenopus laevisbasecancer cellcellular imagingcollaborative environmentexperienceextracellularfluidityimaging modalityinhibitorinnovationmembermembrane modelmembrane reconstitutionmolecular modelingmutantnovelpreservationprogramsreal-time imagesreconstitutionsingle moleculespatiotemporaltherapeutic target
项目摘要
PROJECT ABSTRACT
In cellular signal transduction, the physical mechanism and the dynamical path of how signaling proteins in a
network transmit information remains poorly understood. The long-term goal is to construct a molecular model
that quantitatively describes intracellular signaling from receptor triggering to downstream activation, both in
health and in diseases. The objective of this proposal is to advance a novel type of reconstitution approach
integrating model membranes and cell extracts to study the membrane-cytosol coupling in the receptor tyrosine
kinase (RTK) signaling pathway. The central hypothesis is that the relevant regulation and kinetics of membrane
signal transduction is dependent on the cytosolic molecules and environment, which are generally not captured
by conventional membrane reconstitution. The rationale underlying this proposal is that such approach offers a
unique experimental advantage that complements live-cell studies in developing a quantitative description of
early signal transduction. Identification of kinetic bottleneck and feedbacks could provide viable therapeutic
targets. The central hypothesis will be pursued by four specific aims: 1) Optimize a robust membrane-cytosol
reconstitution protocol, 2) Compare the first-encounter rate of molecules in the cytosol versus membrane, 3)
Reconstitute and characterize the temporal regulation of the RTK-Ras-MAPK pathway, and 4) Dissect the
spatiotemporal coupling and dynamical path of the RTK-Ras-MAPK signaling. The membrane-cytosol
reconstitution represents a conceptually and technically innovative approach to interrogate intracellular signaling
at the membrane-cytosol interface. Preliminary data support the biochemical feasibility of this reconstitution
approach. In combination with advanced fluorescence microscopy, this platform enables control and
characterization of real-time signaling events, down to the single-molecule level. The significance of this research
program is the development of a mechanistic and dynamical framework of the RTK signaling pathway, which
acts as a paradigm for studying other signaling pathways. Such efforts could broadly impact our understanding
of the organizing principles of signal transduction, and transform our view on diseases and therapeutics.
Dr. Yuan-Chi Huang (William Y. C. Huang) is the principal investigator of this project. Dr. Huang's goal is to
become a leading expert in the biophysics of cellular signal transduction. Dr. Huang has extensive research
experience developing imaging-based membrane assays that map complex signaling reactions to quantifiable
reconstituted systems. This award enables Dr. Huang to integrate an additional imaging method, lattice light-
sheet microscopy, to resolve cytosolic dynamics, as well as acquire experimental training in single-cell imaging.
Dr. Huang is mentored by a leader in systems biology, Dr. James Ferrell, and is further supported by a strong
collaboration team, Dr. Steven Boxer, Dr. Christopher Garcia, and Dr. Joanna Wysocka. All of them are faculty
members at Stanford University. Such arrangement demonstrates the exceptionally collaborative environment
of Stanford University, and highlights the feasibility and effectiveness of the mentorship and collaboration.
项目摘要
在细胞信号转导中,信号蛋白如何发挥作用的物理机制和动力学路径
网络传输信息仍然知之甚少。长期目标是构建分子模型
定量描述了从受体触发到下游激活的细胞内信号传导,两者都在
健康和疾病。该提案的目的是提出一种新型的重组方法
整合模型膜和细胞提取物来研究受体酪氨酸中的膜-细胞质偶联
激酶 (RTK) 信号通路。中心假设是膜的相关调节和动力学
信号转导依赖于细胞质分子和环境,通常不被捕获
通过传统的膜重建。该提案的基本原理是,这种方法提供了
独特的实验优势补充了活细胞研究的定量描述
早期信号转导。动力学瓶颈和反馈的识别可以提供可行的治疗
目标。中心假设将通过四个具体目标来实现:1)优化稳健的膜-细胞质
重构方案,2) 比较细胞质与膜中分子的首次相遇率,3)
重建并表征 RTK-Ras-MAPK 通路的时间调节,以及 4) 剖析
RTK-Ras-MAPK 信号的时空耦合和动态路径。膜-细胞质
重构代表了一种在概念和技术上创新的研究细胞内信号传导的方法
在膜-细胞质界面。初步数据支持这种重组的生化可行性
方法。与先进的荧光显微镜相结合,该平台可以实现控制和
实时信号事件的表征,直至单分子水平。本研究的意义
该计划是开发 RTK 信号通路的机械和动力学框架,
充当研究其他信号通路的范例。这些努力可能会广泛影响我们的理解
信号转导的组织原理,并改变我们对疾病和治疗的看法。
黄元奇博士(William Y. C. Huang)是该项目的首席研究员。黄博士的目标是
成为细胞信号转导生物物理学的领先专家。黄博士研究广泛
具有开发基于成像的膜测定的经验,该测定可将复杂的信号反应映射到可量化的
重构的系统。该奖项使黄博士能够整合一种额外的成像方法,晶格光-
片状显微镜,以解决细胞溶质动力学问题,并获得单细胞成像的实验训练。
黄博士得到了系统生物学领域的领军人物 James Ferrell 博士的指导,并得到了强大的支持。
合作团队包括 Steven Boxer 博士、Christopher Garcia 博士和 Joanna Wysocka 博士。全部都是教员
斯坦福大学成员。这样的安排展现了非凡的协作环境
斯坦福大学的教授,并强调了指导和合作的可行性和有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan-Chi Huang其他文献
Yuan-Chi Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuan-Chi Huang', 18)}}的其他基金
Reconstructing and deconstructing intracellular signaling at the membrane-cytosol interface
重建和解构膜-细胞质界面的细胞内信号传导
- 批准号:
10640274 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
相似国自然基金
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
- 批准号:11926407
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
StuDy AimED at Increasing AlCohol AbsTinEnce (DEDICATE)
旨在提高酒精戒断率的研究(奉献)
- 批准号:
10577022 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Advancing Student Potential for Inclusion with Research Experiences (ASPIRE)
通过研究经验提升学生融入的潜力(ASPIRE)
- 批准号:
10678356 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Oklahoma C. difficile U19 Administrative Core
俄克拉荷马州艰难梭菌 U19 管理核心
- 批准号:
10625173 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别: