Lipid regulation of Cardiac Excitation-Contraction coupling
心脏兴奋-收缩耦合的脂质调节
基本信息
- 批准号:10451117
- 负责人:
- 金额:$ 60.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAcuteAddressAdultAngiotensin IIArachidonic AcidsArchitectureAreaBiochemistryBiological AssayBiomechanicsBiotinylationBypassCalciumCardiacCardiac OutputCell DeathCell membraneCell surfaceCellsChronicConsensusCoupledCouplingCyclic AMP-Dependent Protein KinasesDataDimerizationElectrophysiology (science)ElectrostaticsEndocytosisEquilibriumExcisionF-ActinFunctional disorderGene ExpressionGoalsHealthHeart failureHydrolysisHypertensionHypertrophyImageInfusion proceduresIon ChannelKnowledgeLigationLinkLipidsMass Spectrum AnalysisMediatingMembraneMicrotubulesModelingMusMuscle CellsMyocardialNanostructuresNocodazoleOpticsOutputPTEN genePathologicPerfusionPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipase CPhospholipidsPhosphoric Monoester HydrolasesPhosphorylationPhysiologicalPlayProductionRegulationResolutionRoleRyR2SarcolemmaSignal PathwaySignal TransductionSirolimusStressStructureSurfaceSystemTechniquesTestingVasoconstrictor AgentsVentricularactin capping proteinblood pressure controlblood pressure regulationcalmodulin-dependent protein kinase IIcardioprotectionexperimental studyheart functionimaging approachimprovedin silicoinnovationlatrunculin Anovelpatch clamppreventreceptorrecruitresponsetheoriestooltrafficking
项目摘要
Project Summary
Experiments outlined in this application, suggest a novel paradigm, that acute angiotensin II (AngII)-stimulated
PIP2 hydrolysis triggers cardiac CaV1.2 channel internalization, providing a means to rapidly tune cellular
excitability and modulate EC-coupling in health. In contrast, we propose that sustained deficits in plasma
membrane CaV1.2 expression, and PIP2 depletion during chronic AngII can trigger a maladaptive compensatory
sympathetic response that improves cardiac function in the short-term but ultimately leads to progressive,
pathological cardiac remodeling, hypertrophy, and potentially arrhythmogenic Ca2+ signaling dysregulation. We
provide compelling preliminary data indicating that PIP2 hydrolysis, downstream of acute AngII/AT1R/Gq
activation, leads to endocytosis of cardiac CaV1.2 channels. We can visualize this endocytosis occurring
dynamically in live ventricular myocytes upon perfusion with physiological concentrations of AngII (100 nM).
Initial results indicate a shift in the balance between channel insertion and removal, such that AngII-stimulated
removal of PM channels, leads to an ~30 % reduction in PM CaV1.2 abundance. We observe a strikingly similar
%-reduction in three other separate experimental approaches, finding decreased ICa in electrophysiology studies,
reduced channel cluster area and expression in super-resolution imaging, and a loss of PM CaV1.2 in surface
biotinylation. We isolate PIP2 as the critical executor of this response, distinct from the activation of PKC and
arachidonic acid production that accompanies AT1R stimulation with experiments that bypass the receptors and
instead utilize a rapamycin-stimulated dimerization system to recruit a 4’,5’ phosphatase to the membrane and
deplete PIP2. Our results support a novel mechanistic role of PIP2 on Cav1.2 channel trafficking and expression
which can be tuned in response to physiological signaling cascades to modulate EC-coupling during acute
regulation of blood pressure. We further propose that chronic depletion of PIP2 during AngII/AT1R signaling
associated with heart failure causes: (i) sustained destabilization of PM CaV1.2 and long-lived expression deficits;
(ii) a compensatory sympathetic response to boost cardiac function involving activation of PKA and CaMKII that
acts in combination with direct AT1R-stimulated CaMKII to enhance CaV1.2 and RyR2 phosphorylation,
producing enhanced Po and diastolic leak that stimulates CaN/NFAT and hypertrophic gene expression; (iii)
enhanced IP3 production that also stimulates CaN/NFAT and hypertrophic gene expression, and (iv) cytoskeletal
instability as a result of depletion of cardioprotective PI(3,4,5)P3 and enhanced ROS-induced microtubule
catastrophe that disrupts channel delivery and promotes biomechanical instability, t-tubule and loss of dyads.
We propose to rigorously test these ideas in two specific aims described herein.
项目摘要
在此应用中概述的实验表明了一个新的范式,即急性血管紧张素II(ANGII)刺激
PIP2水解触发心脏CAV1.2通道内在化,提供了一种快速调整细胞的手段
兴奋性和调节健康的EC耦合。相比之下,我们建议持续的等离子体定义
慢性血管中的膜CAV1.2表达和PIP2部署可以触发适应不良的补偿性
同情反应在短期内改善心脏功能,但最终导致渐进性,
病理心脏重塑,肥大和潜在的心律不齐CA2+信号失调。我们
提供引人注目的初步数据,表明PIP2水解,急性Angii/AT1R/GQ的下游
激活,导致心脏CAV1.2通道的内吞作用。我们可以可视化这种内吞作用
灌注后,在活心肌细胞中动态动态,其物理浓度的ANGII(100 nm)。
初始结果表明通道插入和去除之间的平衡发生了变化,因此Angii刺激了
去除PM通道,导致PM CAV1.2抽象降低约30%。我们观察到非常相似的
% - 在其他三种单独的实验方法中还原,在电生理研究中发现ICA的改善,
降低了通道簇面积和超分辨率成像中的表达,表面损失了PM CAV1.2
生物素化。我们将PIP2分离为此响应的关键执行者,与PKC和PKC的激活不同。
用绕过接收器和
取而代
DEPLETE PIP2。我们的结果支持PIP2在CAV1.2通道运输和表达中的新机械作用
可以根据物理信号级联反应调节,以调节急性期间的EC偶联
血压调节。我们进一步建议,在Angii/AT1R信号传导期间,PIP2的慢性耗竭
与心力衰竭的原因相关:(i)PM CAV1.2的持续不稳定和长期表达定义;
(ii)对增强心脏功能的补偿性交感反应,涉及PKA和CAMKII的激活
与直接AT1R刺激的CAMKII结合起作用,以增强CAV1.2和RYR2磷酸化,
产生增强的PO和舒张期泄漏,从而刺激CAN/NFAT和肥厚基因表达; (iii)
增强的IP3产生也可以刺激CAN/NFAT和肥厚基因表达,并且(iv)细胞骨架
由于心脏保护PI(3,4,5)P3的耗竭并增强了ROS诱导的微管,因此不稳定
破坏通道传递并促进生物力学不稳定性,T型管和二元组损失的灾难。
我们建议在此处描述的两个具体目标中严格测试这些想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rose Ellen Dixon其他文献
Rose Ellen Dixon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rose Ellen Dixon', 18)}}的其他基金
Lipid regulation of Cardiac Excitation-Contraction coupling
心脏兴奋-收缩耦合的脂质调节
- 批准号:
10626790 - 财政年份:2022
- 资助金额:
$ 60.23万 - 项目类别:
Molecular choreography of CaV1.2 channels in the aging myocardium
衰老心肌CaV1.2通道的分子编排
- 批准号:
9980760 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
Molecular choreography of CaV1.2 channels in the aging myocardium
衰老心肌CaV1.2通道的分子编排
- 批准号:
10617814 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
Molecular choreography of CaV1.2 channels in the aging myocardium
衰老心肌CaV1.2通道的分子编排
- 批准号:
10399483 - 财政年份:2019
- 资助金额:
$ 60.23万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别: