Genomics-Assisted Antibiotic Discovery from Unprecedented Microbes of the Great Salt Lake
基因组学辅助从大盐湖前所未有的微生物中发现抗生素
基本信息
- 批准号:10448339
- 负责人:
- 金额:$ 62.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-12 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAgeAmericanAmericasAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBackBacteriaBacterial InfectionsBiochemicalBiochemistryBioinformaticsBiologicalBiomedical EngineeringCell physiologyCenters for Disease Control and Prevention (U.S.)Cessation of lifeChemical AgentsChemicalsCitiesClinicalCluster AnalysisCoculture TechniquesCoupledDataDevelopmentDiseaseDrug resistanceESKAPE pathogensEnterobacterEnterococcus faeciumEnvironmentEpigenetic ProcessEscherichia coliEssential GenesExhibitsFDA approvedFermentationGene ClusterGenomeGenomicsHealthHealth Care CostsHealthcareHigh Pressure Liquid ChromatographyHumanHuman Cell LineInfectionInvestigationKlebsiella pneumoniaeLeftLibrariesMass Spectrum AnalysisMethodsMicrobeMiningModificationMolecularMolecular TargetMulti-Drug ResistanceNatural ProductsNatural Products ChemistryNatureNosocomial InfectionsOceansPathway interactionsPharmaceutical PreparationsPharmacologic SubstancePlayPseudomonas aeruginosaRecombinantsResistanceResourcesRoleSalineSeaSeawaterSiteSodium ChlorideSoilSourceStaphylococcus aureusStructureToxic effectUniversitiesUtahWaterantimicrobialantimicrobial drugbaseclinically significantcombatdrug discoverydrug resourceinnovationmicrobialmicroorganismnovelpathogenic bacteriapressurequorum sensingresistance mechanismscaffoldscreeningsmall moleculesocialtool
项目摘要
PROJECT SUMMARY
With antibiotic resistance mechanisms spreading rapidly among disease-causing bacteria, our ability to treat
common infections is becoming increasingly difficult. To combat resistance, we desperately need new antibiotic
agents possessing novel modes of action. Natural products, also called secondary metabolites, are small
molecules produced in nature. Secondary metabolites play pivotal roles in many cellular processes and
represent some of the most important pharmaceutical agents in human health care. This especially holds true in
the antibiotic arena as a majority of the clinically prescribed antibiotics are natural products or derivatives thereof
and have been isolated primarily from soil-dwelling bacteria. In recognition that microorganisms have been the
most prolific source of new antibiotics, this project turns back to Nature to exploit the completely unexplored
hypersaline microbes in the Great Salt Lake as a resource for drug discovery. Our observations are that
environmental pressures influence the structural diversity of compounds produced in Nature and microorganisms
thriving in extreme environments often produce chemical agents not observed in their terrestrial counterparts.
The Great Salt Lake, also recognized as “America's Dead Sea”, is an endorheic (fully isolated) hypersaline lake
located near the University of Utah in Salt Lake City, Utah. While seawater has an average salinity of ~3.3%, the
Great Salt Lake ranges between 8-28%. Our preliminary data demonstrate that the unexplored hypersaline
microorganisms of the Great Salt Lake possess antimicrobial activity against Gram-negative and Gram-positive
bacterial pathogens, produce metabolites containing molecular scaffolds never before observed, and their
genomes contain unprecedented biosynthetic machinery. Thus, these microbes serve as an ideal resource for
the discovery of new antimicrobial agents possessing novel modes of action. To access and develop these
agents, we have developed an integrated project that will leverage the strengths of our collaborative team
including expertise in natural products isolation and structural elucidation, microbial biochemistry, genome
mining, bioinformatics and bioengineering of recombinant natural products. From this project, unique antibiotic
agents can be discovered along with information defining their biosynthetic pathways, their molecular targets,
and likely other mechanisms of drug resistance. To exploit this novel resource, our specific aims will focus on:
1) Creating a hypersaline microbial library from sediment collected from the Great Salt Lake and screening the
isolates using innovative methods for antimicrobial activity; 2) Identifying and validating new antibiotic agents
using chemical and molecular networks; and 3) Identifying the biosynthetic machinery and molecular targets of
the newly discovery antibiotic agents using genomic and bioinformatic approaches.
项目概要
随着抗生素耐药机制在致病细菌中迅速传播,我们治疗的能力
为了对抗耐药性,我们迫切需要新的抗生素。
具有新颖作用方式的天然产物,也称为次级代谢物,是小的。
自然界产生的分子在许多细胞过程中发挥着关键作用。
代表了人类医疗保健中一些最重要的药剂,这尤其适用于。
抗生素领域,因为大多数临床处方抗生素都是天然产物或其衍生物
并主要从土壤细菌中分离出来。
作为新抗生素最多产的来源,该项目回归自然,开发完全未开发的抗生素
我们的观察结果是,大盐湖中的高盐微生物可以作为药物发现的资源。
环境压力影响自然和微生物产生的化合物的结构多样性
在极端环境中繁衍生息通常会产生在其陆地盟友中未观察到的化学物质。
大盐湖,也被称为“美国的死海”,是一个内流(完全孤立)的超盐湖
位于犹他州盐湖城的犹他大学附近,虽然海水的平均盐度约为 3.3%,但
我们的初步数据表明,大盐湖的盐度范围为 8-28%。
大盐湖的微生物对革兰氏阴性和革兰氏阳性菌具有抗菌活性
细菌病原体,产生含有以前从未观察到的分子支架的代谢物,及其
基因组包含前所未有的生物合成机制,因此,这些微生物是理想的资源。
发现具有新作用方式的新抗菌剂以获取和开发这些药物。
代理,我们开发了一个综合项目,将利用我们协作团队的优势
包括天然产物分离和结构解析、微生物生物化学、基因组方面的专业知识
重组天然产物的挖掘、生物信息学和生物工程从这个项目中,独特的抗生素。
可以发现药物以及定义其生物合成途径、分子靶标的信息,
以及可能的其他耐药机制 为了利用这种新资源,我们的具体目标将集中在:
1)利用从大盐湖收集的沉积物创建高盐微生物库并筛选
使用创新方法进行抗菌活性分离;2) 识别和验证新的抗生素药物
使用化学和分子网络;3) 识别生物合成机制和分子靶标
使用基因组和生物信息学方法新发现的抗生素药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaclyn Marie Winter其他文献
Jaclyn Marie Winter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaclyn Marie Winter', 18)}}的其他基金
Genomics-Assisted Antibiotic Discovery from Unprecedented Microbes of the Great Salt Lake
基因组学辅助从大盐湖前所未有的微生物中发现抗生素
- 批准号:
10298732 - 财政年份:2021
- 资助金额:
$ 62.21万 - 项目类别:
Genomics-Assisted Antibiotic Discovery from Unprecedented Microbes of the Great Salt Lake
基因组学辅助从大盐湖前所未有的微生物中发现抗生素
- 批准号:
10663207 - 财政年份:2021
- 资助金额:
$ 62.21万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 62.21万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 62.21万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 62.21万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 62.21万 - 项目类别: