Neural Computations Underlying Cancellation of the Vestibular Consequences of Voluntary Movement
消除随意运动前庭后果的神经计算
基本信息
- 批准号:10434677
- 负责人:
- 金额:$ 53.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAmericanBehaviorBrainBrain StemCalibrationCerebellar CortexCerebellar NucleiCerebellar vermis structureCerebellumCodeComputer ModelsDevelopmentDiagnosisDiseaseDizzinessEnsureEquilibriumEsthesiaFunctional disorderGenerationsGoalsHeadHead MovementsImpairmentKnowledgeLabyrinthLearningMaintenanceMediatingModelingMonkeysMotionMotivationMotorMovementNeuronsPathway interactionsPatientsPatternPerceptionPerformancePlayPopulationPostural responsePosturePurkinje CellsQuality of lifeReflex actionResearchResearch Project GrantsResearch Project SummariesRewardsRoleSensorySignal TransductionSourceStimulusSymptomsSystemTestingUpdateVestibular lossVestibular nucleus structurebasebehavioral studydensitydesignexperimental studyfall riskgazeimprovedinsightmotor controlneuromechanismnovelprogramsrelating to nervous systemresponsesensory feedbacksensory inputsensory stimulusspinal reflexvestibular pathway
项目摘要
Project Summary: This research program is motivated by three goals. First, we will establish the neural
mechanisms that underlie the brain's ability to estimate and cancel self-generated vestibular (inner ear
balance) input during active movement. Second, we will determine how the vestibular cerebellum learns to
adapt to changes in the relationship between expected and actual sensory input to maintain stabile perception
and accurate behavior. Third, we will assess how reward-motivation signals influence circuit performance.
The brain's ability to distinguish sensory stimuli that are the result of self-generated (i.e., active) versus
unexpected or externally generated (i.e., passive) stimulation is vital to ensuring perceptual stability and
accurate motor control. Notably, in the vestibular system, the same central neurons that receive afferent input
also send direct projections to motor centers to control balance and posture via the vestibular-spinal reflex.
This reflex is essential for providing robust postural responses to unexpected vestibular stimuli, yet is counter-
productive when the goal is to make active head movements. Accordingly, it is advantageous to suppress this
pathway during active self-motion. Over the past two decades, we have made excellent progress toward
identifying where brain makes the distinction between reafferent (i.e., active) and exafferent (i.e., passive)
vestibular signals. Specifically, while the responses of vestibular afferents remain robust (and equivalent)
regardless of whether stimulation is active or passive, neurons at the next stage of processing in the vestibular
nuclei are significantly less responsive to active self-motion. In addition, we have shown that this suppression
only occurs when sensory feedback matches that expected based on the motor command (e.g., during normal
active movements). In the proposed research, we will address several fundamental questions that remain open
regarding the computations that the brain performs to ensure stable perception and accurate motor control
during self-motion. First, experiments in Aim 1 will investigate how the brain computes the vestibular
cancellation signal that eliminates actively generated signals from early sensory processing. We predict that
the cerebellar cortex plays an essential role in computing the mismatch between expected and actual
vestibular input to compute a cancellation signal. Aim 2 will determine how the cerebellum learns to interpret
active motion as self-generated when the relationship between the actual and expected sensory feedback is
altered. These experiments will provide insight into the error-based mechanisms that ensure calibration of the
vestibular reafference suppression mechanism is maintained. Finally, in Aim 3 we will determine whether and
how motivation modulates cerebellum-mediated vestibular reafference suppression. Combined, these studies
will (1) determine the source of the vestibular reafference cancellation signal, (2) advance our understanding of
the cerebellum adapts to changes in vestibular input, and (3) clarify how neuronal mechanisms underlying
reafference suppression can be leveraged by motivational influences to optimize performance.
项目摘要:该研究计划由三个目标推动。首先,我们将建立神经网络
大脑评估和消除自身产生的前庭(内耳)能力的机制
平衡)主动运动期间的输入。其次,我们将确定前庭小脑如何学习
适应预期和实际感觉输入之间关系的变化,以保持稳定的感知
和准确的行为。第三,我们将评估奖励激励信号如何影响电路性能。
大脑区分自我产生(即主动)和外部感觉刺激的能力
意外或外部产生的(即被动)刺激对于确保知觉稳定性和
精确的电机控制。值得注意的是,在前庭系统中,接收传入输入的相同中枢神经元
还向运动中心发送直接投射,以通过前庭脊髓反射控制平衡和姿势。
这种反射对于对意外的前庭刺激提供强有力的姿势反应至关重要,但也是反作用的。
当目标是进行积极的头部运动时,效果会更好。因此,抑制这种情况是有利的
主动自我运动期间的路径。过去二十年来,我们在以下方面取得了巨大进展:
识别大脑在何处区分传入(即主动)和传出(即被动)
前庭信号。具体来说,虽然前庭传入神经的反应仍然强劲(且相当)
无论刺激是主动还是被动,前庭神经元在下一阶段的处理过程中
原子核对主动自运动的反应明显较差。此外,我们已经证明这种抑制
仅当感觉反馈与基于电机命令的预期相匹配时才会发生(例如,在正常情况下)
主动运动)。在拟议的研究中,我们将解决几个仍然悬而未决的基本问题
关于大脑为确保稳定的感知和准确的运动控制而执行的计算
自我运动过程中。首先,目标 1 中的实验将研究大脑如何计算前庭
消除信号,消除早期感觉处理中主动生成的信号。我们预测
小脑皮层在计算预期与实际之间的不匹配方面起着至关重要的作用
前庭输入来计算取消信号。目标 2 将决定小脑如何学习解释
当实际和预期的感觉反馈之间的关系为时,主动运动是自生成的
改变了。这些实验将深入了解基于误差的机制,确保校准
前庭再传入抑制机制得以维持。最后,在目标 3 中,我们将确定是否和
动机如何调节小脑介导的前庭再传入抑制。综合起来,这些研究
将(1)确定前庭再传入抵消信号的来源,(2)增进我们对
小脑适应前庭输入的变化,并且(3)阐明潜在的神经元机制
动机影响可以利用再传入抑制来优化绩效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen E Cullen其他文献
Kathleen E Cullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen E Cullen', 18)}}的其他基金
Mechanism and Functional Significance of Polarity Reversal in Mechanosensory Organs
机械感觉器官极性反转的机制和功能意义
- 批准号:
10057376 - 财政年份:2019
- 资助金额:
$ 53.22万 - 项目类别:
Mechanism and Functional Significance of Polarity Reversal in Mechanosensory Organs
机械感觉器官极性反转的机制和功能意义
- 批准号:
10530662 - 财政年份:2019
- 资助金额:
$ 53.22万 - 项目类别:
Neural Computations Underlying Cancellation of the Vestibular Consequences of Voluntary Movement
消除随意运动前庭后果的神经计算
- 批准号:
10668300 - 财政年份:2019
- 资助金额:
$ 53.22万 - 项目类别:
Mechanism and Functional Significance of Polarity Reversal in Mechanosensory Organs
机械感觉器官极性反转的机制和功能意义
- 批准号:
10305653 - 财政年份:2019
- 资助金额:
$ 53.22万 - 项目类别:
Neural Computations Underlying Cancellation of the Vestibular Consequences of Voluntary Movement
消除随意运动前庭后果的神经计算
- 批准号:
10188492 - 财政年份:2019
- 资助金额:
$ 53.22万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
- 批准号:82373461
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10582394 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Preservation of brain NAD+ as a novel non-amyloid based therapeutic strategy for Alzheimer’s disease
保留大脑 NAD 作为阿尔茨海默病的一种新型非淀粉样蛋白治疗策略
- 批准号:
10588414 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
- 批准号:
10589192 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别: