Preservation of brain NAD+ as a novel non-amyloid based therapeutic strategy for Alzheimer’s disease
保留大脑 NAD 作为阿尔茨海默病的一种新型非淀粉样蛋白治疗策略
基本信息
- 批准号:10588414
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcetylationAddressAdenineAdultAgeAge MonthsAgingAlzheimer like pathologyAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease riskAmericanAmyloidAnimalsAxonBehaviorBehavioralBiochemicalBiological MarkersBlood - brain barrier anatomyBrainBromodeoxyuridineCessation of lifeChronicClinical TrialsCognitionCognitiveCongo RedDeteriorationDiseaseEnzymesExtravasationFailureFemaleFutureGlial Fibrillary Acidic ProteinGoalsHematoxylin and Eosin Staining MethodHippocampusHumanImmunoglobulin GImpaired cognitionImpairmentInjuryLengthLimb structureLinkMeasurementMeasuresMediatingMedical centerMedicineMental DepressionModelingMonkeysMusNerve BlockNerve DegenerationNeuronsNiacinamideNicotinamide adenine dinucleotideOral IngestionOther GeneticsPDGFRB genePECAM1 geneParkinson DiseasePathologicPathologic ProcessesPathologyPatient CarePatientsPeptidesPericytesPeripheralPersonsPlasmaPopulationPre-Clinical ModelProcessResourcesSafetySenile PlaquesSilver StainingStainsStrokeStructureSymptomsSystemTestingTherapeuticTherapeutic AgentsTherapeutic InterventionToxic effectTransmission Electron MicroscopyTraumatic Brain InjuryVacuoleVascular Endothelial CellVeteransVisualizationWorkaging populationanxiety-like behavioraxonal degenerationblood-brain barrier crossingblood-brain barrier functionbody systembrain healthcofactorcognitive functioncytokinedrug developmenteffective therapyextracellularfluoro jadeforced swim testimmunohistochemical markersimprovedmalemorris water mazemouse modelneurogenesisneuroinflammationneuron lossneuropsychiatrynew therapeutic targetnovelnovel strategiesnovel therapeuticsobject recognitionpharmacologicpre-clinicalprematurepreservationpreventprotective effectsarkosylside effectsmall moleculetargeted treatmenttau Proteinstherapeutic target
项目摘要
Tragically, there is currently a lack of effective medicines to prevent, treat, or reverse AD, and the problem is
growing exponentially as our population rapidly ages. A large part of the failure to develop effective medicines
for patients with AD is due to the disproportionate amount of resources that have been devoted to pursuing
putative therapeutic targets linked to the largely unsuccessful amyloid hypothesis of AD. Only very recently has
the first anti-amyloid based therapy been conditionally approved, and many major medical centers are declining
to offer this to patients due to serious concerns regarding its safety and efficacy. Thus, it is imperative that we
discover and develop new and complementary therapeutic targets for AD. Aging is well known to be the greatest
risk factor for AD, and it has been demonstrated that brain nicotinamide adenine dinucleotide (NAD+) levels
decrease in people as they age, and even more so in AD. NAD+ is a critical cofactor and energy metabolite in
brain health and function, and we hypothesize that preserving brain NAD+ will prevent, treat, and potentially even
reverse AD-like pathology and behavioral deficits in a preclinical mouse model of AD, known as 5xFAD mice.
Importantly, we have also shown that this mouse model of AD is characterized by significantly diminished levels
of brain NAD+ as well, thereby modeling this important aspect of human AD. We are testing our hypothesis with
a novel small molecule compound (P7C3-A20) that crosses the blood-brain barrier (BBB) and potently and
selectively stimulates activity of nicotinamide adenine monophosphate ribosyltransferase (NAMPT). NAMPT is
the rate limiting enzyme in NAD+ synthesis, and peripherally-administered P7C3-A20 elevates brain NAD+ levels
under conditions of disease or injury that would otherwise deplete NAD+. The protective effect of P7C3-A20 to
preserve NAD+ and thereby block nerve cell degeneration has been demonstrated in multiple preclinical models,
including mouse models of TBI, Parkinson’s disease, and stroke, as well as a monkey model of hippocampal
nerve cell death. Extended daily administration of P7C3-A20 upwards of a year has shown no toxicity or side
effects in any animal system, including monkeys in which extensive pathological analysis across all organ
systems was conducted after 9 months of daily oral ingestion. Three early pathophysiologic features of AD that
are dependent on NAD+ availability in the brain are axonal degeneration, BBB deterioration, and excessively
high death of young hippocampal neurons that arise from adult hippocampal neurogenesis. We propose that
augmenting NAD+ levels in the AD brain will provide a novel means of preventing, treating, and potentially even
reversing AD. We will thus test whether treatment with P7C3-A20 will be effective in early-disease (treatment
from 2-6 months of age), mid-disease (treatment from 6-12 months of age), and late-disease (treatment from 12-
18 months of age) in both male and female 5xFAD mice. Protective effects in these domains will also be
correlated with objective measure of cognitive and neuropsychiatric behavioral function, as well as other classical
pathologic features of AD, including neuroinflammation, tau pathology, and amyloid plaque accumulation. We
predict that P7C3-A20 will preserve brain NAD+ levels and protect axonal structure, BBB integrity, and
hippocampal neurogenesis at each of these disease stages, which will be associated with generally improved
cognitive and behavioral function, as well as reduced damage in the brain. If so, then our results will establish
robust proof of principle for a novel approach to preventing, treating, and possibly reversing AD by preserving
normal NAD+ levels in the brain. Importantly, our results could also establish a basis for future clinical trials with
a compound currently in drug development (P7C3-A20), together with a plasma biomarker of brain nerve cell
degeneration (acetylated-tau) that we have previously established in both mice and humans.
可悲的是,目前缺乏有效的药物来预防、治疗或逆转AD,问题是
随着我们人口的迅速老龄化,这一问题呈指数级增长,其中很大一部分原因是未能开发出有效的药物。
对于 AD 患者来说,这是由于投入了不成比例的资源来追求
直到最近,人们才发现与 AD 的淀粉样蛋白假说相关的假定治疗靶点。
第一个基于抗淀粉样蛋白的疗法已获有条件批准,许多主要医疗中心正在衰落
由于对其安全性和有效性的严重担忧,我们必须向患者提供该产品。
众所周知,发现和开发新的补充性 AD 治疗靶点是最重要的。
AD 的危险因素,并且已证明大脑烟酰胺腺嘌呤二核苷酸 (NAD+) 水平
随着年龄的增长,NAD+ 的数量会减少,对于 AD 来说更是如此,NAD+ 是 AD 的关键辅助因子和能量代谢物。
大脑健康和功能,我们认为保护大脑 NAD+ 可以预防、治疗甚至可能
在 AD 临床前小鼠模型(称为 5xFAD 小鼠)中逆转 AD 样病理和行为缺陷。
重要的是,我们还表明,这种 AD 小鼠模型的特点是水平显着降低
大脑 NAD+ 的作用,模拟了人类 AD 的这一重要方面,因此我们正在用它来检验我们的假设。
一种新型小分子化合物(P7C3-A20),可穿过血脑屏障(BBB)并有潜力
选择性刺激烟酰胺腺嘌呤单磷酸核糖基转移酶 (NAMPT) 的活性。
NAD+ 合成中的限速酶,外周给药的 P7C3-A20 可提高大脑 NAD+ 水平
在疾病或损伤的情况下,否则会消耗 P7C3-A20 的保护作用。
保留 NAD+ 从而阻止神经细胞变性已在多个临床前模型中得到证明,
包括 TBI、帕金森病和中风的小鼠模型,以及海马体的猴子模型
每天服用 P7C3-A20 一年以上,未显示出任何毒性或副作用。
对任何动物系统的影响,包括对所有器官进行广泛病理分析的猴子
每日口服摄入 9 个月后进行系统研究,发现 AD 的三个早期病理生理特征。
依赖于大脑中 NAD+ 可用性的因素包括轴突变性、BBB 恶化和过度使用 NAD+。
我们认为,成年海马神经发生引起年轻海马神经元的大量死亡。
增加 AD 大脑中的 NAD+ 水平将提供一种新的方法来预防、治疗甚至可能
因此,我们将测试 P7C3-A20 治疗是否对早期疾病有效(治疗)
2-6个月龄)、疾病中期(6-12个月龄治疗)、疾病晚期(12-12个月治疗)
18 个月大)对雄性和雌性 5xFAD 小鼠在这些领域的保护作用也将是相同的。
与认知和神经精神行为功能以及其他经典的客观测量相关
AD 的病理特征,包括神经炎症、tau 病理学和淀粉样斑块积聚。
预测 P7C3-A20 将保持大脑 NAD+ 水平并保护轴突结构、BBB 完整性和
这些疾病阶段的每个阶段的海马神经发生,这将与总体改善相关
认知和行为功能,以及大脑损伤减少 如果是这样,那么我们的结果将成立。
通过保留来预防、治疗和可能逆转 AD 的新方法的强有力的原理证明
重要的是,我们的结果还可以为未来的临床试验奠定基础。
目前正在药物开发中的化合物(P7C3-A20),以及脑神经细胞的血浆生物标志物
我们之前已经在小鼠和人类中建立了变性(乙酰化 tau)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW A PIEPER其他文献
ANDREW A PIEPER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW A PIEPER', 18)}}的其他基金
Chemical, Structural and Cell-Signaling Interrogation of 15-Prostanglandin Dehydrogenase in Tissue Repair and Regeneration
15-前列腺素脱氢酶在组织修复和再生中的化学、结构和细胞信号传导研究
- 批准号:
10206836 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Chemical, Structural and Cell-Signaling Interrogation of 15-Prostanglandin Dehydrogenase in Tissue Repair and Regeneration
15-前列腺素脱氢酶在组织修复和再生中的化学、结构和细胞信号传导研究
- 批准号:
10414952 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
10002159 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
10057083 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
9280829 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Neuroprotective Small Molecules as Novel Treatments for ALS
神经保护小分子作为 ALS 的新型治疗方法
- 批准号:
8816870 - 财政年份:2015
- 资助金额:
-- - 项目类别:
IN VIVO MODULATION OF THE IP3R BY PHOSPHORYLATION
通过磷酸化对 IP3R 进行体内调节
- 批准号:
6186429 - 财政年份:2000
- 资助金额:
-- - 项目类别:
相似国自然基金
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高糖水平通过JUN乙酰化修饰上调NCAPD3促进结直肠癌发生的分子机制
- 批准号:82303250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
β-羟基丁酸介导NF-kB p65去乙酰化修饰在经腹功能性磁刺激治疗脊髓损伤后神经病理性疼痛中的机制研究
- 批准号:82302862
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ChREBP乙酰化介导脂肪酸代谢探讨“肝病及心”理论内涵及降脂消斑方干预研究
- 批准号:82374192
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DEPDC5蛋白乙酰化修饰导致mTROC1的激活并促进骨肉瘤的恶性进展
- 批准号:82360472
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Impact of microbiota-derived metabolites on traumatic brain injury-related neurodegeneration
微生物群衍生代谢物对创伤性脑损伤相关神经变性的影响
- 批准号:
10582762 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying kinase signaling pathways linked to tau-mediated neurodegeneration
识别与 tau 介导的神经变性相关的激酶信号通路
- 批准号:
10753257 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Epigenetic mechanisms of disrupted neurodevelopment in Menke-Hennekam syndrome
Menke-Hennekam 综合征神经发育障碍的表观遗传机制
- 批准号:
10816703 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Establishing a New Model of Bone Health in Formerly Premature Individuals
为早产儿建立骨骼健康的新模型
- 批准号:
10647677 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Linking Juvenile Experiences with Adult Patterns of Behavior
将青少年经历与成人行为模式联系起来
- 批准号:
10620295 - 财政年份:2022
- 资助金额:
-- - 项目类别: