Mechanism and Functional Significance of Polarity Reversal in Mechanosensory Organs
机械感觉器官极性反转的机制和功能意义
基本信息
- 批准号:10057376
- 负责人:
- 金额:$ 69.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAccelerationAddressAdoptedAdultAffectAgeAnatomyAnimal ModelAnteriorAuditoryAutomobile DrivingBehaviorBirthCalciumCell Differentiation processCell MaturationCell PolarityCell physiologyCellsCessation of lifeComplexDataDevelopmentDiseaseDizzinessElectrophysiology (science)EnsureEpithelialEpithelial CellsEquilibriumEvoked PotentialsEye MovementsFishesFrequenciesFunctional disorderG-Protein-Coupled ReceptorsG-substrateGTP-Binding ProteinsGeneticGenetic EpistasisGoalsGravity PerceptionHairHair CellsHeadHead MovementsHearingHeterotrimeric GTP-Binding ProteinsHomologous GeneImageImpairmentIntercellular JunctionsIon ChannelLabyrinthLateralMeasuresMechanicsMediatingModalityMolecularMotionMusMutant Strains MiceOrganOrphanPathway interactionsPatternPertussis ToxinPhenocopyPhysiologyPopulationPositioning AttributeProcessProteinsResearchRoleSaccule and UtricleSaccule structureSense OrgansSensoryShapesSignal TransductionSisterStimulusSystemTestingTimeUtricle structureVertebratesVisionVisualWater MovementsWorkZebrafishafferent nervebasebehavior testemx2 proteingamma-Aminobutyric Acidgazeinnovationinsightinterestkinetosomelateral linemaculamechanotransductionmolecular markermutantnerve supplyneuromastplanar cell polaritypreventprogramspublic health relevancereceptorreceptor functionregional differenceresponsesignal processingtherapy designtranscription factorvestibulo-ocular reflexvirtualwater flow
项目摘要
PROJECT SUMMARY/ABSTRACT
Vestibular disorders affect as many as 35% of adults past age 40. Studies of the vestibular inner ear have
yielded important insights into how we process and compensate for head motion including the existence of
parallel channels of information in the afferent nerve. In macular organs, for example, two populations of hair
cells adopt opposite planar orientations of their hair bundles and thus opposite responses to head movements.
This highly conserved bidirectional organization was first described in neuromasts, the lateral line organs
sensing water movements in fish, but the genetic program implementing this reversal during development is
only starting to be deciphered. Consequently, ablation studies to reveal the importance of reversal for
vestibular function have not been possible until recently. Here we propose to address this question by
investigating the consequences of inactivating an orphan G protein coupled receptor (GPCRx), implicated by
our preliminary data in orientation reversal in mouse hair cell epithelia. Based on our preliminary data, we
suggest that mouse GPCRx functions downstream of the transcription factor EMX2 and upstream of the
heterotrimeric G protein Gi to reverse a ground state of polarity established by planar cell polarity proteins.
We will test this hypothesis and also use the GPCRx mutant as an animal model to pinpoint how polarity
reversal shapes macular organ responses and downstream effects on vestibular behaviors. To reach these
goals, we will: 1) Use genetics to determine how GPCRx instructs reversal at the molecular level, solving its
epistatic relationship to EMX2, Gi and planar cell polarity proteins in mice, and use zebrafish to test whether
GPCRx-Gi is a conserved effector pathway for reversal. 2) Use molecular markers, electrophysiology and
calcium imaging to resolve hair cell maturation and function in absence of polarity reversal. 3) Determine how
polarity reversal affects afferents' organization and function, with afferent recordings, as well as overall
vestibular function using behavioral tests. Our coherent body of preliminary evidence ensures the feasibility
and the high interest of the project, and our focus on a virtually unstudied receptor protein guarantees
innovation. The multi-PI team is ideally suited to address complementary questions in both the mouse and
zebrafish acoustico-lateralis systems. We anticipate that this collaborative effort will be decisive towards
solving the mechanism of hair cell orientation reversal, its conservation across vertebrates and its significance
for mammalian vestibular physiology. Thorough understanding of polarity reversal will help interpret and design
treatments for vestibular dysfunctions.
项目概要/摘要
前庭疾病影响多达 35% 的 40 岁以上成年人。对前庭内耳的研究表明
对我们如何处理和补偿头部运动(包括头部运动的存在)产生了重要的见解
例如,在黄斑器官中,传入神经中存在平行的信息通道。
细胞采用相反的发束平面方向,因此对头部运动做出相反的反应。
这种高度保守的双向组织首先在神经丘(侧线器官)中被描述
感知鱼类的水运动,但在发育过程中实现这种逆转的遗传程序是
消融研究才刚刚开始被解读,以揭示逆转的重要性。
直到最近,前庭功能才成为可能。在这里,我们建议通过以下方式解决这个问题。
研究失活孤儿 G 蛋白偶联受体 (GPCRx) 的后果,涉及
我们在小鼠毛细胞上皮细胞方向反转方面的初步数据 基于我们的初步数据,我们。
表明小鼠 GPCRx 在转录因子 EMX2 下游和转录因子 EMX2 上游发挥作用。
异三聚体 G 蛋白 Gi 可逆转平面细胞极性蛋白建立的极性基态。
我们将测试这一假设,并使用 GPCRx 突变体作为动物模型来查明极性如何
逆转塑造黄斑器官反应和对前庭行为的下游影响以达到这些目的。
为了实现目标,我们将:1)利用遗传学来确定 GPCRx 如何在分子水平上指示逆转,解决其问题
与小鼠 EMX2、Gi 和平面细胞极性蛋白的上位关系,并使用斑马鱼测试是否
GPCRx-Gi 是一种保守的逆转效应途径 2) 使用分子标记、电生理学和方法。
钙成像可解决极性反转情况下毛细胞的成熟和功能问题 3) 确定如何进行。
极性反转影响传入的组织和功能,传入记录以及整体
我们通过行为测试来确定前庭功能。
以及对该项目的高度兴趣,以及我们对几乎未经研究的受体蛋白的关注保证
多 PI 团队非常适合解决小鼠和小鼠中的互补问题。
我们预计这种合作努力将对斑马鱼外侧声学系统产生决定性影响。
解决毛细胞方向反转的机制、其在脊椎动物中的保守性及其意义
对于哺乳动物前庭生理学的深入了解将有助于解释和设计。
前庭功能障碍的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen E Cullen其他文献
Kathleen E Cullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen E Cullen', 18)}}的其他基金
Neural Computations Underlying Cancellation of the Vestibular Consequences of Voluntary Movement
消除随意运动前庭后果的神经计算
- 批准号:
10434677 - 财政年份:2019
- 资助金额:
$ 69.83万 - 项目类别:
Mechanism and Functional Significance of Polarity Reversal in Mechanosensory Organs
机械感觉器官极性反转的机制和功能意义
- 批准号:
10530662 - 财政年份:2019
- 资助金额:
$ 69.83万 - 项目类别:
Mechanism and Functional Significance of Polarity Reversal in Mechanosensory Organs
机械感觉器官极性反转的机制和功能意义
- 批准号:
10305653 - 财政年份:2019
- 资助金额:
$ 69.83万 - 项目类别:
Neural Computations Underlying Cancellation of the Vestibular Consequences of Voluntary Movement
消除随意运动前庭后果的神经计算
- 批准号:
10188492 - 财政年份:2019
- 资助金额:
$ 69.83万 - 项目类别:
Neural Computations Underlying Cancellation of the Vestibular Consequences of Voluntary Movement
消除随意运动前庭后果的神经计算
- 批准号:
10668300 - 财政年份:2019
- 资助金额:
$ 69.83万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 69.83万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 69.83万 - 项目类别:
Development of a new class of BLVRB-targeted redox therapeutics in breast cancer
开发一类新型 BLVRB 靶向乳腺癌氧化还原疗法
- 批准号:
10759653 - 财政年份:2023
- 资助金额:
$ 69.83万 - 项目类别:
Microvascular Neuroimaging in Age-related Alzheimer's Disease and Tauopathies
年龄相关性阿尔茨海默病和 Tau蛋白病的微血管神经影像学
- 批准号:
10738372 - 财政年份:2023
- 资助金额:
$ 69.83万 - 项目类别:
PGRMC Proteins as Markers of Fertility and Overall Health Status
PGRMC 蛋白作为生育力和整体健康状况的标志
- 批准号:
10729068 - 财政年份:2023
- 资助金额:
$ 69.83万 - 项目类别: