Dissecting the mechanism of how dominant negative MYH7 mutations lead to genetic cardiomyopathies

剖析 MYH7 显性失活突变导致遗传性心肌病的机制

基本信息

项目摘要

Dilated and “burnt out” hypertrophic cardiomyopathies are common genetic cardiomyopathies that lead to heart failure. Currently over 115,000 Veterans annually receive care for heart failure from the VA Health Care System. Despite efforts to implement guideline-directed medical therapy, the overall 5 year mortality is ~50% after diagnosis, so clearly this is a disease important to not only Veterans but also the general population. Myosin heavy chain 7 (MYH7) mutations are common causes of hypertrophic and dilated cardiomyopathies. Genetic testing for MYH7 variants have been limited by frequent identification of variants of unknown significance and the lack of disease-modifying therapies when pathogenic variants are identified. This proposal will identify MYH7 variants that will cause contractile dysfunction, the first step to the development of heart failure, and study the disease pathogenesis in human induced pluripotent stem cell-derived cardiomyocytes. Mutations in either the MYH7 S2 domain or the C1C2 domain of cardiac myosin binding protein C (cMyBPC) that disrupt the normal protein-protein interaction between S2/C1C2 have recently been shown to induce heart failure with reduced ejection fraction. This leads to the hypothesis that a subset of MYH7 mutation-induced cardiomyopathies are due to impaired interaction between these two proteins. The proposed work uses saturation mutagenesis and high-throughput modified yeast two-hybrid assays to identify nearly all mutations in the MYH7 S2 domain that disrupt normal protein-protein interaction with the C1C2 domain of cMyBPC. This will assist in identifying all clinically relevant MYH7 S2 variants that are susceptible to developing heart failure and generate a “look up” table that would enable the confident identification of patients that could benefit from therapeutic intervention (Aim 1). Abnormally functioning mutant MYH7 protein raises the possibility of increased myosin degradation. This is supported by recent work demonstrating an upregulation of muscle RING-finger protein-1 (MuRF1), an E3 ligase that targets MYH7 and other sarcomeric proteins for degradation, in human induced pluripotent stem cell-derived cardiomyocytes expressing the pathogenic MYH7 E848G variant. This leads to the hypothesis that MuRF1 upregulation in MYH7 mutation-induced cardiomyopathies contributes to systolic dysfunction and that reducing MuRF1 levels will increase contractility. The proposed work will use gain-of-function and loss-of-function experiments to elucidate the role of MuRF1 in MYH7 mutation-induced cardiomyopathies (Aim 2). If successful it will determine if MuRF1 can be a novel therapeutic target for these genetic cardiomyopathies. The proposed work uses several innovative techniques. It combines cutting-edge high-throughput functional assays with mechanistic studies in genetically-edited human induced pluripotent stem cell-derived cardiomyocytes to identify patients with MYH7 mutations that are at risk of developing heart failure and then determines the suitability of a potential novel disease-modifying intervention. The high-throughput assays will integrate well with the proposed training in computational genomics. The method in Aim 1 can later be applied to interactions between MYH7 and other sarcomeric proteins to potentially identify all clinically relevant MYH7 variants. The mechanistic studies in human induced pluripotent stem cells in Aim 2 will help elucidate the pathogenesis of MYH7 mutation-induced cardiomyopathies and together with Aim 1 will form the basis for a future Merit Award proposal during the 4th year of the CDA2 award. Overall, the CDA2 will provide the additional training necessary for the nominee to use iPSC-based disease modeling with computational genomics to discover new disease-modifying therapies with precision medicine approaches.
扩张型和“倦怠型”肥厚型心肌病是常见的遗传性心肌病,可导致 目前,每年有超过 115,000 名退伍军人接受 VA Health 的心力衰竭护理。 护理系统。尽管努力实施指南指导的药物治疗,但 5 年总体死亡率仍为 诊断后约 50%,因此显然,这不仅对退伍军人而且对一般人都很重要 人口。 肌球蛋白重链 7 (MYH7) 突变是肥大和扩张的常见原因 MYH7 变异的基因检测因频繁识别 MYH7 变异而受到限制。 当致病变异被发现时,其意义未知,并且缺乏疾病缓解疗法。 该提案将确定会导致收缩功能障碍的 MYH7 变异,这是开发 心力衰竭,并研究人类诱导多能干细胞来源的疾病发病机制 心肌细胞。 心肌肌球蛋白结合蛋白 C 的 MYH7 S2 结构域或 C1C2 结构域突变 (cMyBPC) 破坏了 S2/C1C2 之间正常的蛋白质-蛋白质相互作用,最近被证明可以 导致射血分数降低的心力衰竭 这导致了 MYH7 的一个子集的假设。 突变诱发的心肌病是由于这两种蛋白质之间的相互作用受损所致。 工作使用饱和诱变和高通量改良酵母双杂交测定来识别几乎所有 MYH7 S2 结构域中的突变破坏了与 C1C2 结构域的正常蛋白质-蛋白质相互作用 cMyBPC。这将有助于识别所有易受感染的临床相关 MYH7 S2 变体。 开发心力衰竭并生成“查找”表,以便能够自信地识别患者 可能受益于治疗干预(目标 1)。 最近的研究证明了肌球蛋白降解增加的可能性。 肌肉环指蛋白-1 (MuRF1),一种针对 MYH7 和其他肌节蛋白的 E3 连接酶 表达致病性 MYH7 的人诱导多能干细胞来源的心肌细胞中的降解 E848G 变体导致 MYH7 突变诱导 MuRF1 上调的假设。 心肌病会导致收缩功能障碍,降低 MuRF1 水平会增加收缩力。 拟议的工作将使用功能获得和功能丧失实验来阐明 MuRF1 在 MYH7 突变诱发的心肌病(目标 2)如果成功,将决定 MuRF1 是否可以成为一种新型心肌病。 这些遗传性心肌病的治疗靶点。 拟议的工作使用了多种创新技术。 基因编辑人类诱导多能干细胞衍生的功能测定和机制研究 心肌细胞识别具有发生心力衰竭风险的 MYH7 突变患者,然后 确定潜在的新型疾病缓解干预措施的适用性。 目标 1 中的方法可以与计算基因组学中提出的训练很好地结合起来。 MYH7 和其他肌节蛋白之间的相互作用,有可能识别所有临床相关的 MYH7 Aim 2 中人类诱导多能干细胞的机制研究将有助于阐明 MYH7 突变诱导的心肌病的发病机制以及与 Aim 1 一起将构成 CDA2 奖项第四年期间的未来优异奖提案 总体而言,CDA2 将提供以下奖项。 被提名者需要接受额外的培训才能使用基于 iPSC 的疾病模型和计算 基因组学通过精准医学方法发现新的疾病缓解疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai-Chun Daniel Yang其他文献

Kai-Chun Daniel Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai-Chun Daniel Yang', 18)}}的其他基金

Dissecting the mechanism of how dominant negative MYH7 mutations lead to genetic cardiomyopathies
剖析 MYH7 显性失活突变导致遗传性心肌病的机制
  • 批准号:
    10515348
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Dissecting the mechanism of how dominant negative MYH7 mutations lead to genetic cardiomyopathies
剖析 MYH7 显性失活突变导致遗传性心肌病的机制
  • 批准号:
    10045499
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
  • 批准号:
    10711136
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
  • 批准号:
    10709381
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
  • 批准号:
    10588092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
  • 批准号:
    10585508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了