Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
基本信息
- 批准号:10417214
- 负责人:
- 金额:$ 63.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectiveAtlasesAutomobile DrivingBehaviorBehavioralBehavioral GeneticsBiologicalBipolar DepressionBipolar DisorderBrainCategoriesClassificationClassification SchemeClinicalCognitionCognitiveComplexDataDevelopmentDiagnosisDiagnosticDimensionsDiseaseDissectionEtiologyExecutive DysfunctionFingerprintFutureGene Expression ProfileGeneral PopulationGenerationsGenesGeneticGenetic RiskGenetic TranscriptionGenetic studyGenomic approachGenomicsHealthHeritabilityHeterogeneityHumanImpairmentIndividualIndividual DifferencesLateralLinkMaintenanceMapsMeasuresMental HealthMental disordersMethodsModelingMolecularMonitorNational Institute of Mental HealthNatureNegative ValenceNeurobiologyParietalParticipantPathogenesisPathologyPatientsPatternPerformancePhenotypePopulationPsychiatric DiagnosisPsychopathologyPsychosesPsychotic DisordersResearchResearch PersonnelResourcesRiskSchizophreniaSeveritiesSeverity of illnessSocial FunctioningStrategic PlanningSymptomsSyndromeSystemTemporal LobeTranslatingUnipolar DepressionVariantVulnerable PopulationsWorkbehavioral genomicsclinical biomarkersclinically relevantcognitive controlcomorbidityconnectomedisease classificationfunctional genomicsimaging geneticsin vivoindividual variationinsightnetwork modelsneural circuitneural networkneurogeneticsneuroimagingnovelpatient populationpredictive modelingprofiles in patientspsychologicrelating to nervous systemsocial deficitstrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Converging evidence indicates that the boundaries separating nominally distinct psychiatric diagnoses are not
sharp or discontinuous with normal behavioral traits and brain function. In healthy populations, individual
differences in behavior are reflected in variability across the collective set of functional brain connections
(functional connectome). These data suggest that the spectra of transdiagnostic symptom profiles observed in
patient populations may arise through detectable patterns of network function. The intrinsic connectivity of the
functional connectome is under strong genetic influence. Spatial patterns of gene transcription recapitulate the
topography of large-scale brain networks, potentially driving comorbidity between symptomatically related
disorders. However, most of what we currently know about the human connectome comes from the study of
healthy populations, impeding the development of fully dimensional models of brain function and obscuring the
interactions through which genetic and neurobiological variation might coalesce to support suites of behaviors
and illness risk within an individual. To address the disconnect between mechanism and nosology, the NIMH
strategic plan calls for a bottom-up reappraisal of psychopathology across multiple levels of analysis;
facilitating the study of relationships from genes to neural circuits and networks through behavior, cutting
across disorders as traditionally defined. Directly addressing these objectives, our proposal will link individual
variation in functional connectomes with symptom profiles across unipolar depression, bipolar depression, and
schizophrenia through the combined application of neuroimaging, behavioral, and genomic methods. We will
establish key biological and clinical features of the functional connectome in three stages. First, we recently
established that disruptions within the frontoparietal network (spanning aspects of dorsolateral and
dorsomedial prefrontal, lateral parietal, and posterior temporal cortices) reflect a shared feature of
schizophrenia and psychotic bipolar disorder. Building upon this work, we will quantify the extent to which
frontoparietal connectivity may reflect a disorder-general marker of symptom severity across both affective and
psychotic illnesses, validating the key psychological features (Aim 1). Second, we will map transdiagnostic
functional connectome variability to the diversity of clinical presentations, extending our analyses across cortex
to develop predictive models of multidimensional symptom profiles (Aim 2). Third, we will identify novel
patterns of gene expression that follow the spatial organization of large-scale brain networks, establish the
impact of contributing loci on in vivo connectome functioning, and assess co-heritability with illness risk (Aim
3). Completion of these aims will yield insights into the neural, behavioral, and genetic basis of affective and
psychotic illnesses, providing a crucial step towards the establishment of a new framework for psychiatric
classification grounded in etiology and pathogenesis.
项目摘要/摘要
融合证据表明,分开名义上不同的精神诊断的边界不是
正常的行为特征和大脑功能,尖锐或不连续。在健康的人群中
行为的差异反映在整个功能性脑连接集的变异性中
(功能连接)。这些数据表明,在
患者人群可能通过可检测到的网络功能模式而产生。固有的连通性
功能连接组受到强大的遗传影响。基因转录的空间模式概括了
大规模脑网络的地形,有可能在症状相关的情况下驱动合并症
疾病。但是,我们目前对人类连接组的了解大多数来自于研究
健康的人群,阻碍了大脑功能的完全维度模型的发展,并掩盖了
遗传和神经生物学变异可能会合并以支持行为套件的相互作用
和一个人内的疾病风险。为了解决机制和诺斯科之间的断开连接,NIMH
战略计划要求在多个分析层面上重新评估心理病理学的自下而上;
通过行为促进从基因到神经回路和网络的关系的研究,切割
传统上定义的跨疾病。直接解决这些目标,我们的建议将链接个人
与单极抑郁症,躁郁症抑郁症和
精神分裂症通过神经影像,行为和基因组方法的联合应用。我们将
在三个阶段中建立功能连接组的关键生物学和临床特征。首先,我们最近
确定了额叶网络中的破坏(跨越背外侧的各个方面
背额前额叶,外侧顶叶和后颞皮层)反映出的共同特征
精神分裂症和精神病性躁郁症。在这项工作的基础上,我们将量化
额叶的连通性可能反映了情感和
精神病疾病,验证关键的心理特征(AIM 1)。其次,我们将映射转诊
临床表现多样性的功能连接变异性,扩展了我们跨皮质的分析
开发多维症状特征的预测模型(AIM 2)。第三,我们将确定小说
遵循大型大脑网络空间组织的基因表达模式,建立
贡献基因座对体内连接组功能的影响,并评估与疾病风险的共同性(目标
3)。这些目标的完成将产生对情感和情感和遗传基础的见解
精神病疾病,为建立新的精神病框架提供了至关重要的一步
基于病因和发病机理的分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AVRAM J HOLMES其他文献
AVRAM J HOLMES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AVRAM J HOLMES', 18)}}的其他基金
Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
- 批准号:
9797148 - 财政年份:2019
- 资助金额:
$ 63.12万 - 项目类别:
Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
- 批准号:
10187655 - 财政年份:2019
- 资助金额:
$ 63.12万 - 项目类别:
Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
- 批准号:
10629302 - 财政年份:2019
- 资助金额:
$ 63.12万 - 项目类别:
Dimensional Neurogenetic Markers of Limbic System Integrity & Psychiatric Illness
边缘系统完整性的维度神经遗传标记
- 批准号:
8581402 - 财政年份:2013
- 资助金额:
$ 63.12万 - 项目类别:
Dimensional Neurogenetic Markers of Limbic System Integrity & Psychiatric Illness
边缘系统完整性的维度神经遗传标记
- 批准号:
9319305 - 财政年份:2013
- 资助金额:
$ 63.12万 - 项目类别:
Action Monitoring in depression: ERP and fMRI correlates
抑郁症的行动监测:ERP 和 fMRI 的相关性
- 批准号:
7276473 - 财政年份:2007
- 资助金额:
$ 63.12万 - 项目类别:
Action Monitoring in depression: ERP and fMRI correlates
抑郁症的行动监测:ERP 和 fMRI 的相关性
- 批准号:
7392191 - 财政年份:2007
- 资助金额:
$ 63.12万 - 项目类别:
相似国自然基金
自然场景下基于自监督的精准视频情感识别研究
- 批准号:62362003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
- 批准号:62373334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳腺癌患者社交网络文本情感自动识别与决策的精准干预系统研制及实证研究
- 批准号:72304131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依赖转录因子CTCF的功能性SNP在双相情感障碍发病中的机制研究
- 批准号:82301711
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双相情感障碍的发病机制研究
- 批准号:32371008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10705163 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10391136 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10548825 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别:
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10585582 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别:
Integrative analysis of genomics and imaging data from the BRAIN Initiative and other public data sources
对来自 BRAIN Initiative 和其他公共数据源的基因组学和成像数据进行综合分析
- 批准号:
10190025 - 财政年份:2021
- 资助金额:
$ 63.12万 - 项目类别: