Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine

整合多个数据源以实现精准癌症医学的统计方法

基本信息

  • 批准号:
    10415744
  • 负责人:
  • 金额:
    $ 34.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary: The primary objective of this research is to develop novel statistical and computational tools to evaluate new and existing cancer therapies for precision cancer medicine, with a principal focus on integrating multiple data sources including randomized controlled trials (RCT) and real world data (RWD). All of the aims are motivated by multidisciplinary collaboration. Evidence-based clinical decision making involves synthesizing available research evidence from multiple resources, including RCT and RWD. Pivotal RCTs are the primary evidence that established the oncologic equivalence or efficacy of local and systemic treatments. However, a recent systematic review found little agreement between population-based RWD and RCTs when comparing the same oncologic treatment regimens. This difference is thought to stem from the highly selective criteria used for trial enrollment coupled with the rapidly changing nature of multidisciplinary cancer care. Moreover, heterogeneous treatment effects by disease biologic tumor subtype on survival outcomes has not been examined sufficiently in early RCTs. We will develop statistical tools and software to evaluate the agreement of findings from RCTs and the real-world patient population, reassessing standard treatment guidelines on local- regional therapies for early-stage breast cancer by patients’ clinical and tumor subtypes. While the proposed methodology is agnostic to disease type, we will use breast cancer patients as proof of principle for the approaches proposed. The specific aims are: (1) to estimate and assess the agreement of treatment efficacy on survival outcomes across multiple studies (e.g., RCT and RWD) using nonparametric calibration weights to adjust for treatment selection bias and heterogeneity between studies; (2) to test the existence of a subgroup of patients with enhanced treatment effect and predict subgroup membership of a treatment using a semi-parametric isotonic- Cox model, and to develop a concordance-assisted learning tool for threshold identification to guide patient treatment selection; (3) to infer the treatment effects on breast cancer-specific survival when the cause of death is unknown in RWD by integrating data from RCT and RWD; (4) to estimate treatment effect for rare subtypes of breast cancer by combining external aggregate data with individual-level data to improve inference efficiency; and (5) to develop and disseminate publicly available, user-friendly software and facilitate the reproducibility and applications of our methods to multiple existing databases, including large-population-level data and RCT data for breast cancer research. The proposed research will advance general methodologic development in comparative effectiveness and precision medicine research by efficiently integrating multiple data sources. More importantly, the study findings could improve evidence-based treatment recommendations, better informing clinicians to select optimal treatments according to patients’ tumor subtypes and other characteristics, thus furthering clinical care via better integration of clinical science.
项目摘要: 这项研究的主要目的是开发新颖的统计和计算工具来评估新的 以及现有的精密癌症医学癌症疗法,主要重点是整合多个数据 包括随机对照试验(RCT)和现实世界数据(RWD)在内的来源。所有目标都是成熟的 由多学科合作。循证临床决策涉及合成可用 来自RCT和RWD在内的多个资源的研究证据。关键RCT是主要证据 这确立了局部和全身治疗的肿瘤学等效性或效率。但是,最近 系统评价在比较时发现了基于人群的RWD和RCT之间的一致性 相同的肿瘤治疗方案。这种差异被认为源于高度选择性的标准 用于试验的入学率以及多学科癌症护理的迅速变化的性质。而且, 疾病生物肿瘤亚型对生存结果的异质治疗效果尚未 在早期的RCT中进行了适当的检查。我们将开发统计工具和软件来评估 RCT和现实世界患者人群的发现,对局部的标准治疗指南进行了重新评估 患者的临床和肿瘤亚型针对早期乳腺癌的区域疗法。而提议 方法论对疾病类型是不可知的,我们将使用乳腺癌患者作为原理证明 提出的方法。 具体目的是:(1)估计和评估治疗效率与生存结果的一致 在多项研究(例如RCT和RWD)中,使用非参数校准权重进行调整以进行治疗 研究之间的选择偏见和异质性; (2)测试存在 增强治疗效果并使用半参数等元 - 预测治疗的亚组成员身份 COX模型,并开发一种与一致性的学习工具,用于指导患者 治疗选择; (3)推断出对乳腺癌特异性生存的影响 通过整合RCT和RWD的数据,RWD中的死亡是未知的; (4)估计罕见的治疗效果 乳腺癌的亚型通过将外部骨料数据与单个级别的数据相结合以改善推理 效率; (5)开发和传播公开可用的,用户友好的软件,并促进 我们方法在多个现有数据库中的可重复性和应用,包括大型人口级别 乳腺癌研究的数据和RCT数据。拟议的研究将提高一般方法论 通过有效整合多重的比较有效性和精确医学研究的发展 数据源。更重要的是,研究结果可以改善基于证据的治疗建议, 更好地通知临床医生根据患者的肿瘤亚型和其他 特征,从而通过更好地整合临床科学来进一步临床护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JING NING其他文献

JING NING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JING NING', 18)}}的其他基金

Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
  • 批准号:
    10632124
  • 财政年份:
    2022
  • 资助金额:
    $ 34.87万
  • 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
  • 批准号:
    9027966
  • 财政年份:
    2016
  • 资助金额:
    $ 34.87万
  • 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
  • 批准号:
    9263902
  • 财政年份:
    2016
  • 资助金额:
    $ 34.87万
  • 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
  • 批准号:
    8700487
  • 财政年份:
    2013
  • 资助金额:
    $ 34.87万
  • 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
  • 批准号:
    8445911
  • 财政年份:
    2013
  • 资助金额:
    $ 34.87万
  • 项目类别:

相似国自然基金

非光滑Dirac方程的高效数值算法和分析
  • 批准号:
    12371395
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于深度学习模型的等位特异DNA甲基化识别算法开发及分析研究
  • 批准号:
    62301194
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
相场模型时空高精度算法的构造与分析
  • 批准号:
    12371396
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
  • 批准号:
    62363005
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    $ 34.87万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 34.87万
  • 项目类别:
Oral Dysplasia and Oral Cavity Cancer Risk in Dental and Medical Surveillance Settings Using a Chairside Chip-Based Cytopathology Tool
使用基于椅旁芯片的细胞病理学工具评估牙科和医疗监测环境中的口腔发育不良和口腔癌风险
  • 批准号:
    10344966
  • 财政年份:
    2022
  • 资助金额:
    $ 34.87万
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10367144
  • 财政年份:
    2022
  • 资助金额:
    $ 34.87万
  • 项目类别:
Neural Network Approach to Estimate Fetal Weight in the Late Third Trimester of Pregnancy
神经网络方法估计妊娠晚期胎儿体重
  • 批准号:
    10507172
  • 财政年份:
    2022
  • 资助金额:
    $ 34.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了