Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
基本信息
- 批准号:9027966
- 负责人:
- 金额:$ 29.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAnthracyclinesAttentionBreast Cancer PatientBreast Cancer TreatmentCancer CenterChronic DiseaseClinical TrialsCollaborationsCommunitiesComputer softwareDataData AggregationData SetData SourcesDatabasesDiseaseEpidermal Growth Factor ReceptorEvidence based treatmentGuidelinesHealthHormone ReceptorHumanInvestigationLinkMeasuresMedical OncologistMethodsModelingObservational StudyOutcomePatient CarePatientsPerformancePopulation-Based RegistryProceduresRandomized Clinical TrialsRare DiseasesRegistriesResearchResourcesRiskRisk FactorsSample SizeSampling ErrorsSourceStatistical MethodsSurgeonSurvival RateTestingTimeTumor BiologyTumor SubtypeUncertaintyVariantanticancer researchbasebreast cancer diagnosischemotherapycohortcomparative effectivenesscost effectivedisorder subtypeeffectiveness researchimprovedindividual patientinflammatory breast cancermalignant breast neoplasmmolecular subtypesmortalityneoplasm registrynoveloncologyoutcome forecastpopulation basedpredictive modelingprognosticprospectivepublic health relevancesemiparametricstatisticstooltumoruser friendly software
项目摘要
DESCRIPTION (provided by applicant): Although comparative effectiveness research (CER) in oncology has attracted substantial attention to provide timely treatment comparisons and improve health outcomes, considerable methodological gaps remain for utilizing multiple sources of data together with efficient statistical methods to assemble evidence in CER. The proposed study is directly motivated by our collaborations with breast cancer medical oncologists and surgeons in the investigation of inflammatory breast cancer (IBC), a rare but aggressive form of breast cancer. The primary objective of this proposal is to develop statistical methods and risk prediction models by combining cohort data containing detailed tumor biology variables with aggregate information with or without sampling error from population-based registry databases. In this project, (Aim 1) we propose statistical methods to utilize aggregate information from external data when analyzing primary cohort data with individual patient level data under both parametric and semiparametric models for survival data, and to provide a test procedure to evaluate the comparability of the information from primary cohort data and that from external data. We will further generalize the approaches to account for uncertainty of the aggregate information in the estimation and inference procedures for survival data (Aim 2). Furthermore, (Aim 3) we will link the primary cohort data with detailed risk profiles to external data without detailed risk factors to develop a novel comprehensive IBC-specific mortality risk prediction model, and provide an estimating approach to evaluate the performance of the established risk prediction model. From an application perspective, our proposed methods of maximizing the use of existing IBC cohort data by combining them with external registry databases is cost-effective and may directly improve evidence-based treatment guidelines for IBC patients. Although motivated by IBC research, the statistical methods will be useful for addressing the challenges of CER in any chronic disease, especially for rare diseases. All software for analytical and statistical tools developed in this project, once validated, will be made available to the broader research community.
描述(由适用提供):尽管肿瘤学中的比较有效性研究(CER)引起了极大的关注,以提供及时的治疗比较并改善健康结果,但仍有相当大的方法差异用于利用多个数据源以及有效的统计方法以及有效的统计方法来在CER中收集证据。拟议的研究是由我们与乳腺癌医学肿瘤学家和外科医生合作进行炎症性乳腺癌(IBC)的合作,这是一种罕见但具有侵略性的乳腺癌形式。该提案的主要目的是通过将包含详细肿瘤生物学变量的队列数据与汇总信息相结合,开发统计方法和风险预测模型。在此项目中,(目标1)我们提出统计方法,以在参数和半摩擦学模型下与单个患者级别数据进行分析,以利用外部数据的总体信息,以用于生存数据,并提供测试程序,以评估来自主要队列数据的信息的兼容性。我们将进一步概括一下在生存数据的估计和推理程序中总计信息不确定性的方法(AIM 2)。此外,(AIM 3)我们将将主要队列数据与详细的风险概况与外部数据联系起来,而无需详细的风险因素开发新的全面的IBC特异性死亡率风险预测模型,并提供了一种估算方法来评估已建立风险预测模型的性能。从应用程序的角度来看,通过将现有IBC队列数据与外部注册表数据库结合使用,我们提出的最大化使用IBC队列数据的方法具有成本效益,并且可以直接改善IBC患者的基于证据的治疗指南。尽管由IBC研究激发,但统计方法将有助于解决任何慢性疾病中CER的挑战,尤其是对于罕见疾病。该项目中开发的所有用于分析和统计工具的软件(一旦经过验证)将提供给更广泛的研究社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JING NING其他文献
JING NING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JING NING', 18)}}的其他基金
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
- 批准号:
10415744 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
- 批准号:
10632124 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
- 批准号:
9263902 - 财政年份:2016
- 资助金额:
$ 29.28万 - 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
- 批准号:
8700487 - 财政年份:2013
- 资助金额:
$ 29.28万 - 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
- 批准号:
8445911 - 财政年份:2013
- 资助金额:
$ 29.28万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Predicting Fatigue, CV Decline & Events After Breast CA Treatment
了解和预测疲劳、CV 下降
- 批准号:
9124809 - 财政年份:2015
- 资助金额:
$ 29.28万 - 项目类别:
Determinants of late cardiovascular morbidity among survivors of hematopoietic ce
造血细胞癌幸存者晚期心血管发病的决定因素
- 批准号:
8893907 - 财政年份:2011
- 资助金额:
$ 29.28万 - 项目类别:
Determinants of late cardiovascular morbidity among survivors of hematopoietic ce
造血细胞癌幸存者晚期心血管发病的决定因素
- 批准号:
8699021 - 财政年份:2011
- 资助金额:
$ 29.28万 - 项目类别:
Determinants of late cardiovascular morbidity among survivors of hematopoietic ce
造血细胞癌幸存者晚期心血管发病的决定因素
- 批准号:
8111884 - 财政年份:2011
- 资助金额:
$ 29.28万 - 项目类别:
Determinants of late cardiovascular morbidity among survivors of hematopoietic ce
造血细胞癌幸存者晚期心血管发病的决定因素
- 批准号:
8308372 - 财政年份:2011
- 资助金额:
$ 29.28万 - 项目类别: