Project 3 Genes to Omics-Informed Drugs: Drug Repositioning and Testing to Prevent AF Progressions
项目 3 基因组学药物:药物重新定位和测试以预防 AF 进展
基本信息
- 批准号:10410650
- 负责人:
- 金额:$ 62.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAlgorithmsArtificial IntelligenceAtrial FibrillationBassCell NucleusCell modelCellsCellular StressCessation of lifeClinicalDataDatabasesDevelopmentDiagnosisDiseaseDisease ProgressionDoctor of PhilosophyDrug CombinationsDrug TargetingElectrophysiology (science)FibroblastsGene ExpressionGenesGeneticGenomicsGoalsHeart AtriumHumanHuman EngineeringLeadLeftMeasuresMediatingMedicalMetabolicMethodologyModelingMolecularMolecular DiseaseMultiomic DataMusNetwork-basedOutcomePathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPopulationPreventionProcessPrognosisProteinsProteomicsRecurrenceRegulator GenesStressSystems BiologyTestingTherapeuticTimeTissue ModelTissuesValidationappendageauricular appendagebasebiobankcardiac tissue engineeringcell typecomorbiditydrug candidatedrug developmentdrug testinggene regulatory networkgenetic risk factorgenome wide association studyhuman interactomeinsightmetabolomicsmouse modelmultimodalitynovelpersonalized medicineprecision medicinepreclinical efficacypreventprogramsresearch clinical testingresponserisk variantside effectstressorsuccesstherapeutic targettranscription factortranscriptome sequencingtranscriptomicstrial design
项目摘要
PROJECT 3 - Genes to Omics-Informed Drugs: Drug Repositioning and Functional Testing to Prevent
AF Progression
PROJECT SUMMARY
An important clinical problem in atrial fibrillation (AF) is preventing AF from progressing to more persistent
forms. After an initial episode, AF recurs with increase in burden occurring in ~50% and progression to
persistent or permanent AF occurring in 25% within 5 years of diagnosis. Compared to paroxysmal AF,
prognosis is poorer and outcomes after medical or ablation therapy are worse for patients with persistent or
permanent AF. While many processes and pathways have been implicated in AF development and to a lesser
extent progression, the precise molecular drivers, their interactions and context in which they act are not fully
understood. Genetic risk factors for development of AF may differ from those promoting progression of AF,
which may also be impacted by environmental, comorbid or cellular stressors. We hypothesize that an
interplay between AF progression and gene regulatory and interactome networks can be identified and that
understanding these mechanisms is essential to informing therapeutic discovery for AF progression. Our goal
is to identify AF progression genes, pathways and modules that will enable identification and then validation of
repurposable drugs for the prevention of AF and AF progression. To find drugs to target progression of AF, we
must first better understand the molecular components of AF progression. This project builds upon our prior
RNA sequencing (RNASeq) data in human left atrial (LA) appendage (LAA) tissues that showed altered,
inadequate or overwhelmed transcriptomic responses to cell stress pathways occur with progression to
persistent AF. We propose to integrate single-nucleus transcriptomics (snRNASeq) in human LA tissue to
identify master transcription factor (TF)- and interactome-mediated gene regulatory networks and cell types
underlying AF disease progression, overcoming a limitation of bulk RNASeq data that cannot resolve changes
from differing cell composition, such as fibroblasts, which may increase with AF progression. snRNASeq will
yield further insights into AF progression and specific cell types related to progression. We will also use human
interactome network approaches to identify novel risk genes and disease modules that change with AF
progression. We will then integrate interactome, genetic, and AF progression genomic, proteomic and
metabolomics data using artificial intelligence (AI) approaches to identify therapeutic targets for AF progression
and repurposable drugs and drug combinations targeting AF progression. ‘Omic data from other projects in the
Program will also be integrated that may yield potential gene or pathway specific candidate drugs. Candidate
drugs and combinations will then be functionally tested in human engineered heart tissues (EHTs) and relevant
mouse models of spontaneous AF and AF progression. Our focus on identifying repurposable drugs will
shorten the time to testing for AF. Successful completion of this Project will provide insights into the molecular
mechanisms of AF progression; a pipeline for drug identification, functional testing and validation for AF and
AF progression; and importantly, drugs ready for clinical testing.
项目3-对OMICS知名药物的基因:药物重新定位和功能测试以防止
AF的进展
项目摘要
房颤(AF)中一个重要的临床问题是防止AF发展到更持久
表格。首次发作后,AF复发,燃烧的增加在〜50%,进展为
诊断后的5年内,持续或永久性AF发生在25%。与阵发性AF相比
预后较差,医疗或消融治疗后的结果对于持续或
永久AF。尽管许多过程和途径在AF开发中已实施,并且较小
范围进展,精确的分子驱动因素,它们的相互作用和作用的背景不完全
理解。 AF发展的遗传危险因素可能与促进AF进展的遗传风险因素不同,
这也可能受到环境,合并或细胞应激源的影响。我们假设
可以确定AF进展与基因调节和相互作用网络之间的相互作用,并且
了解这些机制对于为AF进展的治疗发现提供了必要。我们的目标
是识别AF进度基因,途径和模块,以实现识别然后验证
用于预防AF和AF进展的可重新申请药物。为了找到靶向AF进展的药物,我们
首先必须更好地了解AF进展的分子成分。这个项目建立在我们先前的
人类左心房(LA)附属组织(LAA)组织中的RNA测序(RNASEQ)数据,显示出改变,
对细胞应激途径的不足或不足的转录组反应随着发展而发生
持续的AF。我们建议将人LA组织中的单核转录组学(SNRNASEQ)整合到
识别主转录因子(TF) - 以及相互作用介导的基因调节网络和细胞类型
基本的AF疾病进展,克服无法解决变化的批量RNASEQ数据的局限性
来自不同细胞组成,例如成纤维细胞,可能随着AF进展而增加。 snrnaseq会
对AF进展和与进展相关的特定细胞类型产生进一步的见解。我们还将使用人类
相互作用的网络方法来识别随着AF改变的新型风险基因和疾病模块
进展。然后,我们将整合相互作用组,遗传和AF进展基因组,蛋白质组学和
使用人工智能(AI)方法来识别AF进展的治疗靶标的代谢组学数据
以及针对AF进展的可重申药物和药物组合。 ‘来自其他项目的OMIC数据
还将整合程序,以产生潜在的基因或途径特定候选药物。候选人
然后,将在人类工程心组织(EHT)和相关的人类工程心脏组织中进行功能测试药物和组合
赞助AF和AF进展的小鼠模型。我们专注于识别可再利用药物将
缩短测试AF的时间。该项目的成功完成将为分子提供见解
AF进展的机制;药物识别,功能测试和验证AF和验证的管道
AF进展;重要的是,准备进行临床测试的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mina Kay Chung其他文献
Mina Kay Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mina Kay Chung', 18)}}的其他基金
Atrial Fibrillation Post-GWAS: Mechanisms to Treatment
GWAS 后心房颤动:治疗机制
- 批准号:
10410643 - 财政年份:2022
- 资助金额:
$ 62.14万 - 项目类别:
Project 3 Genes to Omics-Informed Drugs: Drug Repositioning and Testing to Prevent AF Progressions
项目 3 基因组学药物:药物重新定位和测试以预防 AF 进展
- 批准号:
10646374 - 财政年份:2022
- 资助金额:
$ 62.14万 - 项目类别:
Atrial Fibrillation Post-GWAS: Mechanisms to Treatment
GWAS 后心房颤动:治疗机制
- 批准号:
10646338 - 财政年份:2022
- 资助金额:
$ 62.14万 - 项目类别:
相似国自然基金
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人工智能反馈寻求行为的驱动机制和双刃剑效应研究
- 批准号:72302082
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向智能电网用户侧的智能优化调度和人工智能算法安全研究
- 批准号:62373297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生成式人工智能的易合成与高生物活性的分子三维结构设计
- 批准号:22373085
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别:
SCH: Simulation Optimization of Cardiac Surgical Planning
SCH:心脏手术计划的模拟优化
- 批准号:
10816654 - 财政年份:2023
- 资助金额:
$ 62.14万 - 项目类别:
Project 3 Genes to Omics-Informed Drugs: Drug Repositioning and Testing to Prevent AF Progressions
项目 3 基因组学药物:药物重新定位和测试以预防 AF 进展
- 批准号:
10646374 - 财政年份:2022
- 资助金额:
$ 62.14万 - 项目类别:
Augmented Reality Real-Time Guidance for MRI-Guided Interventions
增强现实实时指导 MRI 引导干预
- 批准号:
10603043 - 财政年份:2020
- 资助金额:
$ 62.14万 - 项目类别:
SBIR Phase I Topic 402 - Artificial Intelligence-Aided Imaging for Cancer Prevention, Diagnosis, and Monitoring
SBIR 第一阶段主题 402 - 用于癌症预防、诊断和监测的人工智能辅助成像
- 批准号:
10269839 - 财政年份:2020
- 资助金额:
$ 62.14万 - 项目类别: