SCH: Simulation Optimization of Cardiac Surgical Planning
SCH:心脏手术计划的模拟优化
基本信息
- 批准号:10816654
- 负责人:
- 金额:$ 29.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAlgorithmsArrhythmiaArtificial IntelligenceAtrial FibrillationAutomobile DrivingCardiacCardiac Surgery proceduresCardiac ablationCardiologyCathetersClinicalComputer ModelsComputer SimulationCoupledDataDecision MakingDeveloping CountriesDiagnosisDiseaseEffectivenessElderlyElectrophysiology (science)EnvironmentEvaluationFamilyFormulationFoundationsFutureGoalsHealthHealth ProfessionalHealthcare SystemsHeartHeart DiseasesHumanInstitutional Review BoardsInvestmentsKnowledgeLearningLocationMachine LearningMapsMedicalMedical StudentsMethodologyMissionModelingModernizationMonitorNational Heart, Lung, and Blood InstituteOperative Surgical ProceduresPathway interactionsPatientsPerformancePersonal SatisfactionPhysicsPhysiologicalPoliciesPopulationPostoperative PeriodProceduresProcessProtocols documentationPublishingResearchSignal TransductionSocietiesSolidSourceSurgical incisionsTechnologyTimeTrainingTranslatingTreesUncertaintyVariantbaseclinical applicationclinical practicecopingdata streamsdata-driven modeldeep learningdesignexperimental studyfightingfrontiergraph neural networkhealth care disparityimprovedinformation processinginnovationinsightknowledge basemodels and simulationmultiple data sourcesnetwork modelsnovelnovel strategiesopen sourceoperationresponserural areasensorsimulationskillssuccesssurgery outcometooltransfer learningvirtual
项目摘要
Many patients take surgical interventions to fight the battle against heart disease. Surgical successes are
critical to the patients’ health and their family well-being. For e.g., atrial fibrillation (AF) is the most
common arrhythmia in elder population. Catheter ablation is an established treatment for AF, which
sequentially creates incision lines to block faulty electrical pathways. However, there are large variations
in surgical outcomes. Modern healthcare systems are investing heavily in sensing and computing
technology to increase information visibility and cope with disease complexity. Massive data are readily
available in the surgical environment. Realizing the full data potential for optimal decision support
depends on the advancement of information processing and computational modeling methodologies.
Our long-term goal is to advance the frontier of precision cardiology by developing new sensor-based
modeling and simulation optimization methodologies. The objective of this project is to optimize AF
ablation by integrating simulation-enabled planning with physics-augmented machine learning of sensor
signals from patients who underwent AF ablation. This objective will be accomplished by pursuing 3
specific aims: 1) Physics-augmented artificial intelligence (AI) for cardiac modeling – This approach will
assimilate heterogeneous sensing data and incorporate electrophysiology prior knowledge into deep
learning to increase the robustness of decision making under uncertainty, thereby driving computer
simulation into clinical applications; 2) Optimal sensing and sequential learning of space-time AF
dynamics – This approach will provide quantitative knowledge of disease mechanisms instead of
subjective knowledge that is difficult to translate (or transfer), thereby reducing healthcare disparity due to
the availability of human experts in rural areas; 3) Integrating sensor-based learning and simulation
optimization for surgical planning - This approach will integrate physics-augmented modeling (Aim 1) and
sensor-based learning (Aim 2) with simulation optimization to improve the clinical practice towards
data-driven & simulation-guided surgical planning. This project will make a major breakthrough towards
precision cardiology by (i) going beyond the current practice of largely expert-based or ad hoc decisions,
(ii) capturing underlying complexities in space-time cardiac dynamics, and (iii) integrating physics-based
modeling, sensor-based learning, and simulation-based planning for surgical decision support.
许多患者采取手术干预措施与心脏病作斗争。手术成功是
对患者的健康及其家庭健康至关重要。对于例如,心房颤动(AF)是最大的
老年人口的普通心律失常。导管消融是对AF的既定治疗方法,
依次创建切口线以阻断故障的电路。但是,有很大的变化
在手术结果中。现代医疗保健系统在感知和计算方面投入了大量投资
提高信息可见性并应对疾病复杂性的技术。大量数据很容易
在手术环境中可用。实现最佳决策支持的完整数据潜力
取决于信息处理和计算建模方法的进步。
我们的长期目标是通过开发基于新的传感器的新型心脏病学领域
建模和仿真优化方法。该项目的目的是优化AF
通过将启用仿真计划与物理学的机器学习的传感器进行整合来消融
接受AF消融的患者的信号。这个目标将通过追求3来实现
具体目的:1)用于心脏建模的物理学的人工智能(AI) - 这种方法将
吸收异质感应数据,并将电生理学的先验知识纳入深度
学会增加不确定性下决策的鲁棒性,从而驾驶计算机
模拟临床应用; 2)最佳感应和时空AF的顺序学习
动力学 - 这种方法将提供疾病机制的定量知识,而不是
很难翻译(或转移)的主观知识,从而降低了由于
在粗糙地区的人类专家的可用性; 3)集成基于传感器的学习和模拟
针对外科计划的优化 - 这种方法将整合物理增强的建模(AIM 1)和
基于传感器的学习(AIM 2)具有模拟优化,以改善临床实践
数据驱动和模拟引导的手术计划。这个项目将为
Precision心脏病学由(i)超出了主要基于专家或临时决定的当前实践,
(ii)捕获时空心脏动力学中的潜在复杂性,以及(iii)整合基于物理的
建模,基于传感器的学习和基于模拟的手术决策支持计划。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Yang其他文献
Hui Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Electrical Activity Patterns in Onset and Cessation of Atrial Fibrillation
心房颤动发作和停止时的电活动模式
- 批准号:
10440608 - 财政年份:2022
- 资助金额:
$ 29.7万 - 项目类别:
Photoacoustic Imaging to Guide Catheter Ablation of Cardiac Arrhythmias
光声成像指导心律失常导管消融
- 批准号:
10453093 - 财政年份:2022
- 资助金额:
$ 29.7万 - 项目类别:
Electrical Activity Patterns in Onset and Cessation of Atrial Fibrillation
心房颤动发作和停止时的电活动模式
- 批准号:
10597215 - 财政年份:2022
- 资助金额:
$ 29.7万 - 项目类别: