Identifying and supporting patients with undiagnosed dementia using the EHR Risk of Alzheimer's and Dementia Assessment Rule (eRADAR): a pilot clinical trial
使用 EHR 阿尔茨海默氏症和痴呆症风险评估规则 (eRADAR) 识别和支持未确诊的痴呆症患者:一项试点临床试验
基本信息
- 批准号:10409614
- 负责人:
- 金额:$ 76.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesAdvocateAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmericasAnxietyAutomobile DrivingCaregiversCaringClient satisfactionClinicClinicalClinical TrialsCognitiveCommunitiesDataDementiaDetectionDevelopmentDiagnosisDiseaseEarly DiagnosisEducationElderlyElectronic Health RecordEmergency department visitEnvironmentEpidemiologyFamilyFamily memberFeedbackFocus GroupsFoundationsFundingFutureGerontologyGoalsHarm ReductionHealthHealth systemHealthcareHealthcare SystemsImmunochemistryImpaired cognitionIntegrated Delivery of Health CareInterventionInterviewInvestigationLearningMammographyMental DepressionMethodsModelingMulti-Institutional Clinical TrialOutcomePatientsPerformancePersonal SatisfactionPersonsPredictive ValuePreventive servicePrimary Care PhysicianPrimary Health CareProceduresProcessQualitative MethodsQuality of CareRandomizedRecommendationReportingResearchResearch PersonnelRiskRisk AssessmentRisk BehaviorsServicesShapesSiteSocial isolationSocietiesSurveysSystemTestingUnited States National Institutes of HealthWashingtonWorkbasecare coordinationcare outcomescomparative effectivenessdementia riskefficacy testingevidence baseexperiencefollow-uphealth care service utilizationhigh riskimplementation scienceimprovedinnovationmedication compliancenovelnovel strategiesolder patientoutreachpatient orientedpilot testrandomized trialrisk prediction modelscreeningsocial stigmasuccesssystems researchtooltreatment as usualusual care arm
项目摘要
Significance: Nearly half of people living with Alzheimer's disease and related dementias have not been
diagnosed. There are many potential benefits of diagnosing these patients, such as connecting them and their
families with appropriate support and services. There are also potential risks such as stigma, depression, and
loss of independence. We propose a pilot clinical trial to refine and test a novel approach for detecting patients
with undiagnosed Alzheimer's disease or dementia through targeted outreach. Our goal is to maximize the
benefits of early detection while minimizing harms. Innovation: We have developed the electronic health
record Risk of Alzheimer's and Dementia Assessment Rule (eRADAR), which uses information in the
electronic health record (EHR) to identify patients with an elevated risk of undiagnosed dementia. In addition,
we have interviewed patients, caregivers, clinicians and healthcare system leaders to inform plans for
implementation. Our current proposal is heavily informed by this preliminary work. We estimate that, if patients
with eRADAR scores in the top 15% were targeted for assessment, we would detect nearly half of patients with
undiagnosed dementia. Investigators: The PIs have expertise in dementia epidemiology, risk prediction
modeling and primary care. They collaborated successfully to develop eRADAR. Co-investigators bring
expertise in qualitative methods, implementation science, and health system change. Approach: We propose
a pilot clinical trial in which about 50 primary care physicians at two clinics within Kaiser Permanente
Washington (KPWA) will be randomly assigned to have their patients (N=~12,000) targeted for outreach based
on their eRADAR scores or to usual care (control group). Our research staff embedded in the clinics will work
with the primary care team to reach out to patients with high eRADAR scores, conduct a preliminary dementia
assessment, make follow-up recommendations, and support patients after diagnosis. In Aim 1, we will develop
and refine intervention processes in an iterative fashion with input from patients, caregivers and primary
care teams. In Aim 2, we will assess eRADAR's performance, focusing on positive predictive value and
dementia diagnosis rates in the intervention vs. usual care groups. In Aim 3, we will use mixed methods to
assess the impact of eRADAR implementation on healthcare utilization and patient and family member
experiences. Environment: KPWA is a learning healthcare system, where research shapes practice and
practice shapes research. KPWA also has a strong track record of innovation utilizing the Epic EMR, which is
widely used in the US, increasing the potential for dissemination. Summary: The proposed study will refine
and pilot test a unique approach for targeted dementia screening in patients at high risk of having undiagnosed
dementia. It will use a novel EHR-based tool and patient-centered outreach processes. This work will lay the
groundwork for a full-scale clinical trial in which we will determine whether implementation of eRADAR
improves care and outcomes for older adults.
意义:近一半患有阿尔茨海默氏病和相关痴呆症的人没有
诊断。诊断这些患者有许多潜在的好处,例如将他们及其连接起来
有适当支持和服务的家庭。也有潜在的风险,例如污名,抑郁和
失去独立性。我们提出了一项试验临床试验,以完善和测试一种用于检测患者的新方法
通过未诊断的阿尔茨海默氏病或痴呆症通过有针对性的外展。我们的目标是最大化
早期检测的好处,同时最大程度地减少危害。创新:我们已经开发了电子健康
记录阿尔茨海默氏症和痴呆评估规则(Eradar)的风险,该规则使用了信息
电子健康记录(EHR)确定患有痴呆症的风险升高的患者。此外,
我们采访了患者,看护人,临床医生和医疗保健系统领导者,以告知计划
执行。这项初步工作为我们目前的提议提供了广泛的了解。我们估计,如果患者
在前15%的Eladar分数被以评估为目标的情况下,我们将发现近一半的患者
未诊断的痴呆症。调查人员:PI在痴呆流行病学,风险预测方面具有专业知识
建模和初级保健。他们成功地合作开发了Eradar。共同投资者带来
定性方法,实施科学和卫生系统的变化方面的专业知识。方法:我们建议
一项试验临床试验,在Kaiser Permanente的两个诊所中,大约50名初级保健医生
华盛顿(KPWA)将随机分配其患者(n = 〜12,000)针对基于外展的目标
在他们的Eradar分数或通常的护理(对照组)上。我们的研究人员嵌入了诊所中
与初级保健团队接触较高的埃达尔分数患者,进行初步痴呆症
评估,提出后续建议并在诊断后支持患者。在AIM 1中,我们将发展
并以患者,看护人和初级的意见进行迭代方式完善干预过程
护理团队。在AIM 2中,我们将评估Eradar的表现,专注于积极的预测价值和
干预与常规护理组中的痴呆症诊断率。在AIM 3中,我们将使用混合方法来
评估实施对医疗保健利用的影响以及患者和家人
经验。环境:KPWA是一种学习医疗系统,研究塑造实践和
练习形状研究。 KPWA还利用Epic EMR的创新记录很强,
在美国广泛使用,增加了传播的潜力。摘要:拟议的研究将完善
试点测试一种独特的方法,用于未诊断的高风险患者的靶向痴呆症筛查
失智。它将使用基于EHR的新型工具和以患者为中心的外展工艺。这项工作将放置
全尺度临床试验的基础工作,我们将确定是否实施ERADAR
改善老年人的护理和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deborah E. Barnes其他文献
VA Symposium: Links to Dementia
- DOI:
10.1016/j.jagp.2012.12.079 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:
- 作者:
Marie A. DeWitt;Deborah E. Barnes;Mark E. Kunik;Sharon M. Gordon - 通讯作者:
Sharon M. Gordon
English- and Spanish-Speaking Vulnerable Older Adults Report Many Unique Barriers to Advance Care Planning (W215A)
- DOI:
10.1016/j.jpainsymman.2021.01.015 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:
- 作者:
Linda H. Phung;Deborah E. Barnes;Aiesha M. Volow;Nikita R. Shirsat;Rebecca L. Sudore - 通讯作者:
Rebecca L. Sudore
Scientific quality of original research articles on environmental tobacco smoke
关于环境烟草烟雾的原创研究文章的科学质量
- DOI:
10.1136/tc.6.1.19 - 发表时间:
1997 - 期刊:
- 影响因子:5.2
- 作者:
Deborah E. Barnes;L. Bero - 通讯作者:
L. Bero
Lifestyle and health-related risk factors and risk of cognitive aging among older veterans
- DOI:
10.1016/j.jalz.2014.04.010 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:
- 作者:
Kristine Yaffe;Tina D. Hoang;Amy L. Byers;Deborah E. Barnes;Karl E. Friedl - 通讯作者:
Karl E. Friedl
Deborah E. Barnes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deborah E. Barnes', 18)}}的其他基金
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 76.52万 - 项目类别:
BRAIN HEALTH TOGETHER: A LIVE-STREAMING GROUP-BASED DIGITAL PROGRAM
共同促进大脑健康:基于小组的直播数字节目
- 批准号:
10747235 - 财政年份:2021
- 资助金额:
$ 76.52万 - 项目类别:
BRAIN HEALTH TOGETHER: A LIVE-STREAMING GROUP-BASED DIGITAL PROGRAM
共同促进大脑健康:基于小组的直播数字节目
- 批准号:
10493302 - 财政年份:2021
- 资助金额:
$ 76.52万 - 项目类别:
BRAIN HEALTH TOGETHER: A LIVE-STREAMING GROUP-BASED DIGITAL PROGRAM
共同促进大脑健康:基于小组的直播数字节目
- 批准号:
10324919 - 财政年份:2021
- 资助金额:
$ 76.52万 - 项目类别:
EXTENDING INDEPENDENCE AND QUALITY OF LIFE FOR PEOPLE WITH ALZHEIMER'S DISEASE OR DEMENTIA THROUGH TELEHEALTH PROGRAM DELIVERY
通过远程医疗计划的实施,提高阿尔茨海默病或痴呆症患者的独立性和生活质量
- 批准号:
10204865 - 财政年份:2020
- 资助金额:
$ 76.52万 - 项目类别:
Identifying and supporting patients with undiagnosed dementia using the EHR Risk of Alzheimer's and Dementia Assessment Rule (eRADAR): a pilot clinical trial
使用 EHR 阿尔茨海默氏症和痴呆症风险评估规则 (eRADAR) 识别和支持未确诊的痴呆症患者:一项试点临床试验
- 批准号:
10665566 - 财政年份:2020
- 资助金额:
$ 76.52万 - 项目类别:
EXTENDING INDEPENDENCE AND QUALITY OF LIFE FOR PEOPLE WITH ALZHEIMER'S DISEASE OR DEMENTIA THROUGH TELEHEALTH PROGRAM DELIVERY
通过远程医疗计划的实施,提高阿尔茨海默病或痴呆症患者的独立性和生活质量
- 批准号:
10019891 - 财政年份:2020
- 资助金额:
$ 76.52万 - 项目类别:
Identifying and supporting patients with undiagnosed dementia using the EHR Risk of Alzheimer's and Dementia Assessment Rule (eRADAR): a pilot clinical trial
使用 EHR 阿尔茨海默氏症和痴呆症风险评估规则 (eRADAR) 识别和支持未确诊的痴呆症患者:一项试点临床试验
- 批准号:
10213652 - 财政年份:2020
- 资助金额:
$ 76.52万 - 项目类别:
Low-cost detection of dementia using electronic health records data: validation and testing of the eRADAR algorithm in a pragmatic, patient-centered trial.
使用电子健康记录数据低成本检测痴呆症:在务实、以患者为中心的试验中验证和测试 eRADAR 算法。
- 批准号:
10266125 - 财政年份:2020
- 资助金额:
$ 76.52万 - 项目类别:
Low-cost detection of dementia using electronic health records data: validation and testing of the eRADAR algorithm in a pragmatic, patient-centered trial.
使用电子健康记录数据低成本检测痴呆症:在务实、以患者为中心的试验中验证和测试 eRADAR 算法。
- 批准号:
10443874 - 财政年份:2020
- 资助金额:
$ 76.52万 - 项目类别:
相似海外基金
Global Center on Climate Change and Water Energy Food Health Systems - Community Engagement Core
全球气候变化和水能源食品卫生系统中心 - 社区参与核心
- 批准号:
10835680 - 财政年份:2023
- 资助金额:
$ 76.52万 - 项目类别:
Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
- 批准号:
10712290 - 财政年份:2023
- 资助金额:
$ 76.52万 - 项目类别: