SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing.
SenseWhy:从被动感知的角度看肥胖症的暴饮暴食。
基本信息
- 批准号:10406434
- 负责人:
- 金额:$ 5.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAlcohol consumptionAlgorithmsAmericanAppetitive BehaviorAwardBehaviorBehavioral MedicineBehavioral SciencesBody Weight decreasedCaloriesChronic DiseaseClinicalComputersCuesCustomDataData AnalyticsDeglutitionDetectionDietDiet HabitsDietitianEatingEating BehaviorEcological momentary assessmentEnergy IntakeEtiologyEventFamilyFeeding behaviorsFood AccessFosteringFoundationsFriendsGesturesGoalsHabitsHealth Care CostsHealthy EatingHeart RateHourHyperphagiaImpulsivityIndividualIntakeInterventionKnowledgeLeadLearningLifeLocationMachine LearningMaintenanceMapsMasticationMeasuresMedicalMethodsModelingMonitorNeckObesityParticipantPatient RecruitmentsPatient Self-ReportPatternPhenotypePhysiologicalPopulationPredictive FactorPublic HealthRecordsRegimenResearch PersonnelRestRoleRunningScientistSensitivity and SpecificityStatistical MethodsStatistical ModelsStressTechniquesTechnologyTimeTrainingVideotapeWristadaptive interventionadult obesityalgorithmic methodologiesbasebehavioral phenotypingcomputer sciencecravingdietaryemotional eatingevidence baseexperiencefeedingheart rate variabilityhedonicimprovedlensmachine learning algorithmmachine learning methodnovelobese personobesity preventionobesity treatmentpersonalized carepredictive modelingpsychologicresponsesensorsocialsubstance abuse treatmenttheorieswearable devicewearable sensor technology
项目摘要
PROJECT SUMMARY/ABSTRACT
Medical professionals have recently put to rest the idea that there is an ideal weight loss diet for
everyone. One cause for obesity is overeating, but we do not know what patterns and behaviors
contribute to this problematic habit. Defining problematic eating behaviors that lead to energy
imbalance is essential for treating obesity. Studies typically focus on a single putative causal
mechanism of overeating such as stress or craving, not addressing the multiple features that co-
occur with overeating. Hence, the factors that predict overeating episodes remain unknown, as
do which of them contribute to an individual's consistency and variability of overeating.
Given recent advancements in passive sensing, we now have the potential to detect problematic
eating using seamlessly captured physiological features such as number of feeding gestures and
swallows, and heart rate variability. Collecting detectable and predictable features that identify
overeating will hone in on the patterns that interventionists may optimally target to help
populations with obesity understand their eating habits and ultimately improve their ability to self-
regulate their eating behaviors. Location-scale models will map the factors that most contribute
to habit formation within subjects, providing interventionists with essential targets to guide
behavior.
The first aim is to collect sensor-based and ecological momentary assessment data (to assess
factors not yet detectable through sensing) from adults with obesity and apply machine learning
algorithms to identify a subset of features that detect overeating, as validated against ground truth
of videotaped eating episodes and 24 hour dietary recall. Participants will wear a passive sensing
sensor suite and respond to random and event-triggered prompts regarding each eating episode.
Then, machine learning will determine the optimal feature subset that detect overeating episodes
using Gradient Boosting Machines. In the second aim, hierarchical clustering techniques will
cluster overeating episodes into theoretically meaningful and clinically known problematic
behaviors related to overeating. The final aim is to build statistical models that explain the effect
of detectable and clinically-known problematic features on new habit formation. These models will
lay a foundation for optimization studies to discover evidence-based decision rules that can guide
timely interventions to treat obesity by preventing overeating, and maintaining healthy eating
behaviors.
项目摘要/摘要
医疗专业人员最近提出了一个理想的减肥饮食的想法
每个人。肥胖的原因之一是暴饮暴食,但我们不知道哪些模式和行为
有助于这个有问题的习惯。定义导致能量的有问题的饮食行为
失衡对于治疗肥胖至关重要。研究通常集中于单个推定因果
强调或渴望之类的暴饮暴食机制,而不是解决共同的多种特征
暴饮暴食发生。因此,预测暴饮暴事的因素仍然未知,因为
他们当中的哪一个有助于个人的一致性和暴饮暴食的可变性。
鉴于被动传感的最新进展,我们现在有可能发现有问题的
使用无缝捕获的生理特征饮食,例如喂养手势的数量和
燕子和心率变异性。收集可检测和可预测的功能来识别
暴饮暴食将磨练干预主义者可能最佳针对的模式以帮助
肥胖的人群了解他们的饮食习惯,并最终提高他们自我自我的能力
调节他们的饮食行为。位置尺度模型将绘制最大的因素
为受试者内部的习惯形成,为干预者提供基本目标来指导
行为。
第一个目的是收集基于传感器的生态瞬时评估数据(评估
来自肥胖的成年人并应用机器学习的因素尚未检测到的因素
算法以确定检测暴饮暴食的特征子集,以验证地面真相
录像的饮食情节和24小时饮食召回。参与者将佩戴被动感
传感器套件并响应每个饮食情节的随机和事件触发的提示。
然后,机器学习将确定检测暴饮暴食的最佳特征子集
使用梯度提升机。在第二个目标中,分层聚类技术将
聚集过多的情节中的理论上有意义且临床上已知的有问题
与暴饮暴食有关的行为。最终目的是建立统计模型来解释效果
关于新习惯形成的可检测和临床上有问题的特征。这些模型将
为优化研究奠定基础,以发现基于证据的决策规则,以指导
及时的干预措施通过防止暴饮暴食和保持健康饮食来治疗肥胖
行为。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
To Mask or Not to Mask? Balancing Privacy with Visual Confirmation Utility in Activity-Oriented Wearable Cameras.
- DOI:10.1145/3351230
- 发表时间:2019-09-01
- 期刊:
- 影响因子:0
- 作者:Alharbi, Rawan;Tolba, Mariam;Alshurafa, Nabil
- 通讯作者:Alshurafa, Nabil
micro-Stress EMA: A Passive Sensing Framework for Detecting in-the-wild Stress in Pregnant Mothers.
- DOI:10.1145/3351249
- 发表时间:2019-09-01
- 期刊:
- 影响因子:0
- 作者:King, Zachary D;Moskowitz, Judith;Alshurafa, Nabil
- 通讯作者:Alshurafa, Nabil
Impacts of Image Obfuscation on Fine-grained Activity Recognition in Egocentric Video.
图像混淆对自我中心视频中细粒度活动识别的影响。
- DOI:10.1109/percomworkshops53856.2022.9767447
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shahi,Soroush;Alharbi,Rawan;Gao,Yang;Sen,Sougata;Katsaggelos,AggelosK;Hester,Josiah;Alshurafa,Nabil
- 通讯作者:Alshurafa,Nabil
ActiSight: Wearer Foreground Extraction Using a Practical RGB-Thermal Wearable.
ActiSight:使用实用的 RGB 热可穿戴设备提取佩戴者前景。
- DOI:10.1109/percom53586.2022.9762385
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alharbi,Rawan;Sen,Sougata;Ng,Ada;Alshurafa,Nabil;Hester,Josiah
- 通讯作者:Hester,Josiah
An End-to-End Energy-Efficient Approach for Intake Detection With Low Inference Time Using Wrist-Worn Sensor.
使用腕戴式传感器进行低推理时间的摄入检测的端到端节能方法。
- DOI:10.1109/jbhi.2023.3276629
- 发表时间:2023
- 期刊:
- 影响因子:7.7
- 作者:Wei,Boyang;Zhang,Shibo;Diao,Xingjian;Xu,Qiuyang;Gao,Yang;Alshurafa,Nabil
- 通讯作者:Alshurafa,Nabil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nabil Alshurafa其他文献
Nabil Alshurafa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nabil Alshurafa', 18)}}的其他基金
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
- 批准号:
10457404 - 财政年份:2021
- 资助金额:
$ 5.38万 - 项目类别:
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
- 批准号:
10663089 - 财政年份:2021
- 资助金额:
$ 5.38万 - 项目类别:
EAT: A Reliable Eating Assessment Technology for Free-living Individuals.
EAT:针对自由生活个体的可靠饮食评估技术。
- 批准号:
10280789 - 财政年份:2021
- 资助金额:
$ 5.38万 - 项目类别:
BehaviorSight: Privacy enhancing wearable system to detect health risk behaviors in real-time.
BehaviourSight:增强隐私的可穿戴系统,可实时检测健康风险行为。
- 批准号:
10043674 - 财政年份:2020
- 资助金额:
$ 5.38万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
- 批准号:
10063429 - 财政年份:2018
- 资助金额:
$ 5.38万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing
SenseWhy:通过被动传感的视角观察肥胖症的暴饮暴食
- 批准号:
10310490 - 财政年份:2018
- 资助金额:
$ 5.38万 - 项目类别:
相似国自然基金
饮酒刺激肝细胞分泌外泌体对股骨头内H型血管的影响及分子机制
- 批准号:82272508
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
伏隔核多巴胺信号通过调节D1R-、D2R-MSNs活动影响个体差异饮酒行为的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
性激素受体相关的性别差异与饮酒因素影响胃癌发生发展的机制研究
- 批准号:82172894
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
性激素受体相关的性别差异与饮酒因素影响胃癌发生发展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
伏隔核多巴胺信号通过调节D1R-、D2R-MSNs活动影响个体差异饮酒行为的机制研究
- 批准号:82101569
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 5.38万 - 项目类别:
Neuromelanin MRI: A tool for non-invasive investigation of dopaminergic abnormalities in adolescent substance use.
神经黑色素 MRI:一种用于非侵入性调查青少年物质使用中多巴胺能异常的工具。
- 批准号:
10735465 - 财政年份:2023
- 资助金额:
$ 5.38万 - 项目类别:
The role of remission in the intergenerational transmission of alcohol use disorder: Course, context, and offspring outcomes
缓解在酒精使用障碍代际传播中的作用:病程、背景和后代结果
- 批准号:
10736096 - 财政年份:2023
- 资助金额:
$ 5.38万 - 项目类别:
Alcohol use, physical activity, and neurophysiological indicators of behavioral adaptability
饮酒、体力活动和行为适应性的神经生理学指标
- 批准号:
10609697 - 财政年份:2023
- 资助金额:
$ 5.38万 - 项目类别:
StuDy AimED at Increasing AlCohol AbsTinEnce (DEDICATE)
旨在提高酒精戒断率的研究(奉献)
- 批准号:
10577022 - 财政年份:2023
- 资助金额:
$ 5.38万 - 项目类别: