Stalled capillary flow: a novel mechanism for hypoperfusion in Alzheimer disease
毛细血管血流停滞:阿尔茨海默病低灌注的新机制
基本信息
- 批准号:10412670
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAutomationBlood capillariesBlood flowBrainClassificationCognitiveCollaborationsComputer softwareCrowdingDataData AnalysesData CompromisingData SetDementiaEngineeringExhibitsFutureGoalsHumanHybridsImageImage AnalysisImageryImpaired cognitionIndividualInstitutesIntelligenceInterventionLabelLaboratoriesMachine LearningManualsMethodsModelingParticipantPathway interactionsPerformanceProcessPublishingResearchResearch PersonnelResourcesScientistSensitivity and SpecificitySpeedSystemTestingTimeTrainingValidationWorkautomated analysisbasebioimagingcitizen sciencecrowdsourcingdata qualitydesignexperiencefluorescence imaginghypoperfusionimprovedmembernovelopen sourceopen source toolpreventprototypeside effectsuccesstwo-photonvolunteer
项目摘要
Project Summary / Abstract
We seek to investigate the agent-based participation of machine learning (ML) models in an existing
crowdsourcing system, which could substantially speed up biomedical image analysis without loss of data quality
for Aims 2-4 in our R01 research. We encountered an analytic bottleneck in our prior R01-supported work, which
seeks to reveal mechanisms that underlie capillary stalling in the brain and requires quantifying stall rates from
2PEF (2-photon excited fluorescence) image stacks. To address this, we partnered with the Human Computation
Institute (HCI) to crowdsource the analysis using the online citizen science platform Stall Catchers, which has
reduced the time to analyze a typical dataset from many months to just a few weeks. Beyond enabling several
published results, 35,000 Stall Catchers volunteers have produced over 1.4 million high-quality “crowd”
annotations, which served as a rich training set in a recent machine learning competition that led to the creation
of fifty distinct ML models exhibiting a broad distribution of sensitivity and bias. None of these models, by itself,
meets our stringent analytic requirements. However, if we could endow these models with sufficient agency to
participate as bonafide Stall Catchers players, then we could test the hypothesis that hybrid (human/machine)
ensembles will achieve the same data quality as human-only ensembles when answers are combined using our
existing “wisdom of the crowd” algorithm. Developing an open source toolkit for transforming ML models into
citizen science “bots” would enable a direct pathway for effectively integrating even substandard ML models into
an existing crowd-powered analytic pipeline without requiring intensive re-engineering. Accelerating biomedical
data analysis in this way could allow other biomedical researchers to derive immediate value from smaller training
sets and investigate more hypotheses using less time and resources. This project could enable a low-overhead
pathway for semi-automation using imperfect ML models, which could leverage ML sooner while reducing
reliance on human cognitive resources, and provide a pathway for achieving fully automated analyses as
improved ML models are added to the crowd as CitSci bots. Success in this pursuit would allow us to incorporate
full-time CitSci bots into Stall Catchers, which could double the number of capillary stalling studies we can
conduct in a given year toward elucidating a more complete mechanistic model of capillary stalling. This would
speed up our ability to identify a targeted intervention with reduced side effects that could alleviate cognitive
impairments in implicated dementias, such as Alzheimer’s disease while contributing to the advancement of
hybrid intelligence methods with broad utility for biomedical data analysis.
项目摘要 /摘要
我们试图调查现有机器学习(ML)模型的基于代理的参与
众包系统,该系统可能次要加快生物医学图像分析而不会丢失数据质量
对于我们的R01研究中的AIMS 2-4。我们在先前的R01支持的工作中遇到了一个分析瓶颈,这是
试图揭示毛细管在大脑中停滞的基础的机制,并需要量化失速率
2PEF(2光子激发荧光)图像堆栈。为了解决这个问题,我们与人类计算合作
Institute(HCI)使用在线公民科学平台摊位捕手进行分析,该摊位有
从数月到几周的时间,将典型数据集分析的时间减少了。超越几个
已发表的结果,有35,000名摊位捕手志愿者产生了超过140万个高质量的“人群”
注释是在最近的机器学习竞赛中作为丰富的培训,导致了创建
五十个不同的ML模型表现出广泛的灵敏度和偏见分布。这些模型本身都没有
满足我们严格的分析要求。但是,如果我们能够赋予这些模型,以提供足够的代理
作为真正的摊位捕手玩家参加,我们可以测试混合动力(人/机器)的假设
当我们使用我们的答案合并时,合奏将达到与人类合奏相同的数据质量
现有的“人群智慧”算法。开发用于将ML模型转换为的开源工具包
公民科学“机器人”将为有效地整合ML模型的直接途径
现有的人群动力分析管道,而无需进行密集的重新设计。加速生物医学
数据分析以这种方式可以使其他生物医学研究人员从较小的培训中获得立即价值
设置并使用更少的时间和资源调查更多假设。这个项目可以使一个低空
使用不完美的ML模型进行半自动化的途径,该途径可能会更快地利用ML
依赖人类认知资源,并为实现完全自动分析的途径作为
作为Citsci机器人,改进的ML型号被添加到人群中。在这种追求方面的成功将使我们能够合并
全日制citsci机器人进入摊位捕获器,这可以使我们可以将毛细管拖延研究的数量增加一倍
在给定的一年中进行阐明毛细管失速的更完整的机械模型。这会
加快我们识别有针对性干预措施的能力,其副作用降低,可以减轻认知
涉及痴呆症的障碍,例如阿尔茨海默氏病,同时有助于进步
具有广泛实用性的混合智力方法用于生物医学数据分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nozomi Nishimura其他文献
Nozomi Nishimura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nozomi Nishimura', 18)}}的其他基金
Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
- 批准号:
10732612 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Toward fast and deep imaging of living tissue with cellular resolution
以细胞分辨率对活体组织进行快速、深度成像
- 批准号:
10651713 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10463819 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10294095 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Age Compromises Novel Motility and Repair Functions in Stem Cell Niche of Intestinal Crypts
年龄会损害肠隐窝干细胞生态位的新活力和修复功能
- 批准号:
9753843 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
- 批准号:
9395599 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
In vivo tools for analyzing interstitial fluid flow
用于分析间质液流动的体内工具
- 批准号:
9751865 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
Supplement: Stalled capillary flow affects protein clearance by modulating interstitial fluid flow
补充:毛细血管血流停滞通过调节间质液流动影响蛋白质清除
- 批准号:
10617575 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8140740 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8044027 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别: