Toward fast and deep imaging of living tissue with cellular resolution
以细胞分辨率对活体组织进行快速、深度成像
基本信息
- 批准号:10651713
- 负责人:
- 金额:$ 62.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAnatomyAnimal ModelAnimalsBiologicalBiological ProcessBiologyBiomedical ResearchBlood capillariesBrainBrain regionCancer BiologyCardiacCell Differentiation processCell physiologyCellsChronicColorDataDatabasesDevelopmentDyesFaceFiberFluorescence MicroscopyFrequenciesGasesGenerationsHeartHippocampusImageImaging TechniquesImmunologyInjuryIntestinesKidneyLabelLasersLocationMammary glandMarrowMeasurementMeasuresMicroscopeMicroscopyMusMuscleNeurosciencesOperative Surgical ProceduresOrganOrgan ModelOsteocytesPenetrationPerformancePerfusionPhotonsPhysiologic pulsePreparationProcessProteinsProtocols documentationResearch ActivityResolutionSignal TransductionSkeletal MuscleSkinSourceStructureSystemTechniquesTestingTimeTissue imagingTissuesVariantVisionVisualizationadaptive opticsbiological systemsbody systembonecell motilitycostdaughter celldesignexperimental studyflexibilityfluorophorefrontierimaging capabilitiesimprovedin vivoinstrumentintravital imagingknowledge baselymph nodesmechanical loadneuralnew technologynext generationnon-invasive optical imagingnovelprogramsscale upstem cell fatetimelinetumortwo photon microscopytwo-photonwaveguide
项目摘要
Abstract
An exciting recent development for high spatial resolution deep tissue imaging is long wavelength three-
photon fluorescence microscopy (3PM). Since its first demonstration of imaging subcortical structures in the
mouse brain, 3PM has driven rapid progress in deep tissue imaging beyond the depth limit of two-photon
fluorescence microscopy (2PM). Long-wavelength 3PM is perhaps the most promising new technology for deep
imaging within scattering biological tissues, and has potential impacts in a large number of biomedical fields such
as neuroscience, immunology, and cancer biology. On the other hand, there are a number of challenges that
must be overcome before 3PM can reach its full potential. Because it is a higher-order nonlinear process, three-
photon excitation (3PE) is inherently weaker than two-photon excitation (2PE). The weak signal strength of 3PM
is particularly problematic for fast imaging of dynamic cellular process. Furthermore, the laser sources for 3PM
are not yet optimized for deep tissue penetration, and the complexity and cost of the excitation source is a major
barrier for the applications of 3PM in a typical biomedical research lab. Finally, nearly all 3PM applications today
are in the brains. Reaching anatomical frontiers is equally possible in other organs with 3PM, but explicit
demonstrations of intravital imaging in novel locations are needed to bring deep imaging capability to other
biological systems. The research activity of this proposal will directly address the above challenges for in vivo
deep tissue 3PM. We will develop a new generation of 3PM that will improve the performance of existing 3PM
by two orders of magnitude and enable multi-color deep tissue imaging with a single excitation wavelength. We
will demonstrate the unprecedented imaging capabilities with a low-cost, fiber-based laser system, removing a
key barrier for the deployment of 3PM in biology labs. Furthermore, by applying our techniques to a wide variety
of biological systems, we will create a valuable knowledge base for the applications of 3PM. Our development
of the next generation 3PM parallels the development of 2PM, where the concerted development effort in lasers,
microscopes, and biological applications in the 1990s made 2PM ubiquitous in biomedical research labs by the
early 2000s. Our vision is to make deep, fast 3PM a routine instrument for a wide variety of biomedical
applications just as 2PM does in the shallower regions of biological tissues and organs. The successful
completion of this program will enable visualization of dynamic process at the sub-cellular level in intact organs
and animal models that are completely beyond the reach of any existing imaging techniques.
抽象的
高空间分辨率深层组织成像的令人兴奋的最新发展是长波长3-
光子荧光显微镜(3pm)。自从其首次演示成像中皮质结构以来
小鼠大脑,下午3点已驱动深层组织成像的快速进展,超出了两光子的深度极限
荧光显微镜(2pm)。长波长下午3点可能是最有希望的新技术
在散射生物组织中进行成像,并在许多生物医学领域具有潜在的影响
作为神经科学,免疫学和癌症生物学。另一方面,存在许多挑战
必须在下午3点之前克服其全部潜力。因为它是一个高阶非线性过程,所以
光子激发(3PE)本质上比两光子激发(2PE)弱弱。 3pm的信号强度弱
对于动态细胞过程的快速成像特别有问题。此外,下午3点的激光源
尚未针对深层组织渗透进行优化,激发源的复杂性和成本是主要的
下午3点在典型的生物医学研究实验室中应用的障碍。最后,今天几乎所有下午3点申请
在大脑中。在下午3点的其他器官中,达到解剖边界是同样的,但明确的
需要在新颖位置进行浸润成像的演示,以将深层成像能力带给其他
生物系统。该提案的研究活动将直接解决上述体内挑战
深组织3pm。我们将开发新一代下午3点,以提高现有3pm的性能
通过两个数量级,并启用具有单个激发波长的多色深层组织成像。我们
将通过低成本,基于纤维的激光系统展示前所未有的成像功能
生物学实验室中下午3点部署的关键障碍。此外,通过将我们的技术应用于各种各样
在生物系统中,我们将为下午3点的应用创建一个宝贵的知识库。我们的发展
下一代下午3点与下午2点的开发相似,在这里,激光的共同开发工作,
显微镜和1990年代的生物应用在生物医学研究实验室中无处不在。
2000年代初。我们的愿景是使深度,快速3pm成为常规工具,用于各种生物医学
在生物组织和器官的较浅区域中,施用就像下午2点一样。成功
该程序的完成将使在完整器官的亚细胞级别上可视化动态过程
和动物模型完全无法实现任何现有的成像技术。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nozomi Nishimura其他文献
Nozomi Nishimura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nozomi Nishimura', 18)}}的其他基金
Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
- 批准号:
10732612 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10463819 - 财政年份:2021
- 资助金额:
$ 62.33万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10294095 - 财政年份:2021
- 资助金额:
$ 62.33万 - 项目类别:
Stalled capillary flow: a novel mechanism for hypoperfusion in Alzheimer disease
毛细血管血流停滞:阿尔茨海默病低灌注的新机制
- 批准号:
10412670 - 财政年份:2021
- 资助金额:
$ 62.33万 - 项目类别:
Age Compromises Novel Motility and Repair Functions in Stem Cell Niche of Intestinal Crypts
年龄会损害肠隐窝干细胞生态位的新活力和修复功能
- 批准号:
9753843 - 财政年份:2018
- 资助金额:
$ 62.33万 - 项目类别:
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
- 批准号:
9395599 - 财政年份:2017
- 资助金额:
$ 62.33万 - 项目类别:
In vivo tools for analyzing interstitial fluid flow
用于分析间质液流动的体内工具
- 批准号:
9751865 - 财政年份:2017
- 资助金额:
$ 62.33万 - 项目类别:
Supplement: Stalled capillary flow affects protein clearance by modulating interstitial fluid flow
补充:毛细血管血流停滞通过调节间质液流动影响蛋白质清除
- 批准号:
10617575 - 财政年份:2015
- 资助金额:
$ 62.33万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8140740 - 财政年份:2010
- 资助金额:
$ 62.33万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8044027 - 财政年份:2010
- 资助金额:
$ 62.33万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
- 批准号:
10822023 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Small Molecule Probes for Fluorescence-guided Head and Neck Cancer Surgery
用于荧光引导头颈癌手术的小分子探针
- 批准号:
10644519 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别: