Toward fast and deep imaging of living tissue with cellular resolution
以细胞分辨率对活体组织进行快速、深度成像
基本信息
- 批准号:10651713
- 负责人:
- 金额:$ 62.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAnatomyAnimal ModelAnimalsBiologicalBiological ProcessBiologyBiomedical ResearchBlood capillariesBrainBrain regionCancer BiologyCardiacCell Differentiation processCell physiologyCellsChronicColorDataDatabasesDevelopmentDyesFaceFiberFluorescence MicroscopyFrequenciesGasesGenerationsHeartHippocampusImageImaging TechniquesImmunologyInjuryIntestinesKidneyLabelLasersLocationMammary glandMarrowMeasurementMeasuresMicroscopeMicroscopyMusMuscleNeurosciencesOperative Surgical ProceduresOrganOrgan ModelOsteocytesPenetrationPerformancePerfusionPhotonsPhysiologic pulsePreparationProcessProteinsProtocols documentationResearch ActivityResolutionSignal TransductionSkeletal MuscleSkinSourceStructureSystemTechniquesTestingTimeTissue imagingTissuesVariantVisionVisualizationadaptive opticsbiological systemsbody systembonecell motilitycostdaughter celldesignexperimental studyflexibilityfluorophorefrontierimaging capabilitiesimprovedin vivoinstrumentintravital imagingknowledge baselymph nodesmechanical loadneuralnew technologynext generationnon-invasive optical imagingnovelprogramsscale upstem cell fatetimelinetumortwo photon microscopytwo-photonwaveguide
项目摘要
Abstract
An exciting recent development for high spatial resolution deep tissue imaging is long wavelength three-
photon fluorescence microscopy (3PM). Since its first demonstration of imaging subcortical structures in the
mouse brain, 3PM has driven rapid progress in deep tissue imaging beyond the depth limit of two-photon
fluorescence microscopy (2PM). Long-wavelength 3PM is perhaps the most promising new technology for deep
imaging within scattering biological tissues, and has potential impacts in a large number of biomedical fields such
as neuroscience, immunology, and cancer biology. On the other hand, there are a number of challenges that
must be overcome before 3PM can reach its full potential. Because it is a higher-order nonlinear process, three-
photon excitation (3PE) is inherently weaker than two-photon excitation (2PE). The weak signal strength of 3PM
is particularly problematic for fast imaging of dynamic cellular process. Furthermore, the laser sources for 3PM
are not yet optimized for deep tissue penetration, and the complexity and cost of the excitation source is a major
barrier for the applications of 3PM in a typical biomedical research lab. Finally, nearly all 3PM applications today
are in the brains. Reaching anatomical frontiers is equally possible in other organs with 3PM, but explicit
demonstrations of intravital imaging in novel locations are needed to bring deep imaging capability to other
biological systems. The research activity of this proposal will directly address the above challenges for in vivo
deep tissue 3PM. We will develop a new generation of 3PM that will improve the performance of existing 3PM
by two orders of magnitude and enable multi-color deep tissue imaging with a single excitation wavelength. We
will demonstrate the unprecedented imaging capabilities with a low-cost, fiber-based laser system, removing a
key barrier for the deployment of 3PM in biology labs. Furthermore, by applying our techniques to a wide variety
of biological systems, we will create a valuable knowledge base for the applications of 3PM. Our development
of the next generation 3PM parallels the development of 2PM, where the concerted development effort in lasers,
microscopes, and biological applications in the 1990s made 2PM ubiquitous in biomedical research labs by the
early 2000s. Our vision is to make deep, fast 3PM a routine instrument for a wide variety of biomedical
applications just as 2PM does in the shallower regions of biological tissues and organs. The successful
completion of this program will enable visualization of dynamic process at the sub-cellular level in intact organs
and animal models that are completely beyond the reach of any existing imaging techniques.
抽象的
高空间分辨率深层组织成像的一项令人兴奋的最新进展是长波长三
光子荧光显微镜(3PM)。自从首次演示皮层下结构成像以来
小鼠大脑,3PM推动深层组织成像突破双光子深度极限
荧光显微镜(2PM)。长波 3PM 或许是深度学习中最有前途的新技术
散射生物组织内成像,并且在许多生物医学领域具有潜在影响,例如
如神经科学、免疫学和癌症生物学。另一方面,也面临着诸多挑战
必须克服 3PM 才能充分发挥其潜力。因为它是一个高阶非线性过程,所以三
光子激发 (3PE) 本质上弱于双光子激发 (2PE)。下午3点信号强度较弱
对于动态细胞过程的快速成像来说尤其成问题。此外,3PM 的激光源
尚未针对深层组织穿透进行优化,并且激发源的复杂性和成本是主要的
3PM 在典型生物医学研究实验室中应用的障碍。最后,今天几乎所有 3PM 申请
都在大脑里。在其他器官中,通过 3PM 达到解剖学前沿同样是可能的,但明确
需要在新位置进行活体成像演示,以将深度成像能力带给其他领域
生物系统。该提案的研究活动将直接解决体内的上述挑战
深层组织下午 3 点。我们将开发新一代 3PM,以提高现有 3PM 的性能
两个数量级,并能够使用单一激发波长进行多色深层组织成像。我们
将通过低成本光纤激光系统展示前所未有的成像能力,消除了
在生物实验室中部署 3PM 的主要障碍。此外,通过将我们的技术应用于各种
我们将为 3PM 的应用创建一个有价值的知识库。我们的发展
下一代 3PM 的发展与 2PM 的发展并行,其中激光器的协同开发工作,
20 世纪 90 年代的显微镜和生物应用使得 2PM 在生物医学研究实验室中无处不在
2000年代初期。我们的愿景是让深度、快速的 3PM 成为各种生物医学的常规仪器
就像 2PM 在生物组织和器官的较浅区域中的应用一样。成功者
该计划的完成将使完整器官亚细胞水平的动态过程可视化
以及完全超出任何现有成像技术范围的动物模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nozomi Nishimura其他文献
Nozomi Nishimura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nozomi Nishimura', 18)}}的其他基金
Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
- 批准号:
10732612 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10463819 - 财政年份:2021
- 资助金额:
$ 62.33万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10294095 - 财政年份:2021
- 资助金额:
$ 62.33万 - 项目类别:
Stalled capillary flow: a novel mechanism for hypoperfusion in Alzheimer disease
毛细血管血流停滞:阿尔茨海默病低灌注的新机制
- 批准号:
10412670 - 财政年份:2021
- 资助金额:
$ 62.33万 - 项目类别:
Age Compromises Novel Motility and Repair Functions in Stem Cell Niche of Intestinal Crypts
年龄会损害肠隐窝干细胞生态位的新活力和修复功能
- 批准号:
9753843 - 财政年份:2018
- 资助金额:
$ 62.33万 - 项目类别:
Diffuse, spectrally-resolved optical strategies for detecting activity of individual neurons from in vivo mammalian brain with GEVIs
使用 GEVI 检测体内哺乳动物大脑中单个神经元活动的漫反射光谱分辨光学策略
- 批准号:
9395599 - 财政年份:2017
- 资助金额:
$ 62.33万 - 项目类别:
In vivo tools for analyzing interstitial fluid flow
用于分析间质液流动的体内工具
- 批准号:
9751865 - 财政年份:2017
- 资助金额:
$ 62.33万 - 项目类别:
Supplement: Stalled capillary flow affects protein clearance by modulating interstitial fluid flow
补充:毛细血管血流停滞通过调节间质液流动影响蛋白质清除
- 批准号:
10617575 - 财政年份:2015
- 资助金额:
$ 62.33万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8140740 - 财政年份:2010
- 资助金额:
$ 62.33万 - 项目类别:
Role of Microvascular Lesions in Alzheimer's Disease
微血管病变在阿尔茨海默病中的作用
- 批准号:
8044027 - 财政年份:2010
- 资助金额:
$ 62.33万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
- 批准号:
10822023 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别:
Small Molecule Probes for Fluorescence-guided Head and Neck Cancer Surgery
用于荧光引导头颈癌手术的小分子探针
- 批准号:
10644519 - 财政年份:2023
- 资助金额:
$ 62.33万 - 项目类别: