Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
基本信息
- 批准号:10405224
- 负责人:
- 金额:$ 46.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAutophagocytosisBindingBiologyCellsChemicalsCollaborationsCommunitiesComplexCrystallizationCrystallographyDegradation PathwayDiabetes MellitusDiseaseDisease modelEnzymesFamilyFamily memberFundingGenerationsGenetic DiseasesGoalsHomeostasisHuman BiologyHuman PathologyInborn Errors of MetabolismInstitutesLinkLysineMalignant NeoplasmsMetabolicMetabolic DiseasesMetabolic PathwayMolecularNerve DegenerationO-GlcNAc transferasePathway interactionsPatientsPharmaceutical ChemistryPhosphotransferasesPositioning AttributeQuality ControlResearchResolutionRoleSchizophreniaStarvationStructureVisioncancer geneticsdiabetes mellitus geneticsdrug discoveryenzyme structureglutaric acidemiaglycosyltransferasehuman diseaseinhibitormultidisciplinarynanomolarprogramsprotein degradationproteostasissensorstructural biologytherapeutic target
项目摘要
Project Summary
The overall research in the Lazarus Lab revolves around studying energy and protein homeostasis as it
relates to human disease using chemical biology and structural biology. We have several multidisciplinary
projects around this topic, including studying the ULK family of autophagy kinases and pseudokinases, lysine
metabolism disorders, and other kinases related to diabetes and cancer. Over the last 4 years, we have used
crystallography and chemical biology to help develop highly potent inhibitors of the metabolic sensor O-GlcNAc
transferase, solved the first structures and identify the first chemical probes of the ULK pseudokinase linked to
schizophrenia ULK4, and helped elucidate the first structure of an enzyme in the lysine metabolic pathway
DHTKD1.
Our goals over the next five-year period include further understanding of the ULK family of kinases.
ULK1 and ULK2 are the main initiating enzymes for the autophagy pathway, a conserved metabolic pathway
whereby cellular components get degraded for quality control and energy generation during starvation. The
pathway is thought to be critical in diseases ranging from cancer to Alzheimer’s disease, yet there are still
major gaps in our understanding of the pathway. What happens to cells when you inhibit autophagy at different
stages of the pathway in different disease models using selective probes? What is the role of the mysterious
family member ULK4, which has no catalytic activity but binds ATP with nanomolar potency and likely has a
function for the ATP binding. Another major goal involves the lysine metabolic pathway, in which several inborn
errors of metabolism are found. How do the enzymes in this pathway function, and can inhibiting other
enzymes in this pathway block the toxic buildup of intermediates that arise in glutaric aciduria patients?
The overall vision of the research program is to develop chemical probes and obtain high-resolution
crystal structures to better understand key enzymes in these metabolic pathways and determine if they are
therapeutic targets for human diseases. Within the context of the Mount Sinai research community, we are
well-positioned to collaborate with our colleagues to leverage our strength in chemical and structural biology to
provide molecular understanding that synergizes with our colleagues’ expertise in human biology or medicinal
chemistry, like our overarching collaboration with the Drug Discovery Institute here and our collaborations that
involve cancer, genetic diseases, diabetes, and neurodegeneration. As new opportunities arise, we can
provide our expertise in the molecular underpinnings of glycosyltransferases, kinases and pseudokinases, and
protein degradation pathways to develop new projects supported by the MIRA funding, while still focusing on
the core projects described above.
项目摘要
拉撒路实验室的总体研究围绕着研究能量和蛋白质稳态的研究
使用化学生物学和结构生物学涉及人类疾病。我们有几个多学科
围绕该主题的项目,包括研究自噬激酶和伪动酶的ULK家族,赖氨酸
代谢疾病以及与糖尿病和癌症有关的其他激酶。在过去的四年中,我们使用了
晶体学和化学生物学,以帮助开发代谢传感器O-GLCNAC的高效抑制剂
转移酶,解决了第一个结构,并确定了与ULK假酶的第一个化学问题
精神分裂症ULK4,并帮助阐明了赖氨酸代谢途径中酶的第一个结构
DHTKD1。
我们在接下来的五年中的目标包括进一步了解ULK激酶家族。
ULK1和ULK2是自噬途径的主要启动酶,这是一种配置的代谢途径
因此,在饥饿期间,细胞成分会降解以控制质量控制和能量。
人们认为途径对于从癌症到阿尔茨海默氏病的疾病至关重要,但仍有
我们对路径的理解的主要差距。当您抑制不同的自噬时,细胞会发生什么
使用选择性问题的不同疾病模型中的途径阶段?神秘的角色是什么
家庭成员ULK4,没有催化活性,但与纳摩尔效力结合,可能具有
ATP结合的功能。另一个主要目标涉及赖氨酸代谢途径,其中有几个天生
发现新陈代谢的错误。该途径中的酶如何抑制其他
该途径中的酶阻止了谷氨酸酸尿症患者出现的中间体的有毒积聚?
研究计划的总体愿景是发展化学问题并获得高分辨率
晶体结构可以更好地理解这些代谢途径中的关键酶,并确定它们是否是
人类疾病的治疗靶标。在西奈山研究社区的背景下,我们是
位置良好,可以与我们的同事合作,以利用我们在化学和结构生物学方面的力量
提供分子理解,该理解与我们的同事在人类生物学或医学方面的专业知识协同作用
化学,就像我们在这里与药物发现研究所的总体合作以及我们的合作
吞噬癌症,遗传疾病,糖尿病和神经退行性。随着新机会的出现,我们可以
提供我们在糖基转移酶,激酶和伪运动酶的分子基础上提供的专业知识,以及
蛋白质降解途径开发由MIRA资金支持的新项目,同时仍关注
上述核心项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Block Lazarus其他文献
Michael Block Lazarus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Block Lazarus', 18)}}的其他基金
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10194214 - 财政年份:2021
- 资助金额:
$ 46.45万 - 项目类别:
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10380139 - 财政年份:2021
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9381909 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9752600 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10769149 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
10226148 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic Disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10682910 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10662232 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
相似国自然基金
SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
- 批准号:82302142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型电化学发光传感体系及其用于感染性疾病多指征监测的研究
- 批准号:82373831
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
纤溶酶原结合蛋白Tetranectin通过抑制梭形菌的肠道内定植介导肠黏膜炎症相关疾病发展的机制研究
- 批准号:82370540
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
左心内皮细胞Piezo1激活EDN1/HIF通路诱导左心疾病所致肺动脉高压的机制研究
- 批准号:82300067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于睡眠期间血氧饱和度探讨室内超细颗粒物短期暴露与慢性阻塞性肺疾病患者心肺健康的关联及其机制
- 批准号:22376005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Role of TTYH1 in mobilizing lipids and ApoE in glia: Implications for brain aging and neurodegeneration
TTYH1 在神经胶质细胞动员脂质和 ApoE 中的作用:对大脑衰老和神经退行性变的影响
- 批准号:
10644705 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Cystathionine Gamma Lyase (CSE) and Hydrogen Sulfide Regulation of Vascular Aging
胱硫醚γ裂解酶 (CSE) 和硫化氢对血管老化的调节
- 批准号:
10715408 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别: