Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
基本信息
- 批准号:10405224
- 负责人:
- 金额:$ 46.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAutophagocytosisBindingBiologyCellsChemicalsCollaborationsCommunitiesComplexCrystallizationCrystallographyDegradation PathwayDiabetes MellitusDiseaseDisease modelEnzymesFamilyFamily memberFundingGenerationsGenetic DiseasesGoalsHomeostasisHuman BiologyHuman PathologyInborn Errors of MetabolismInstitutesLinkLysineMalignant NeoplasmsMetabolicMetabolic DiseasesMetabolic PathwayMolecularNerve DegenerationO-GlcNAc transferasePathway interactionsPatientsPharmaceutical ChemistryPhosphotransferasesPositioning AttributeQuality ControlResearchResolutionRoleSchizophreniaStarvationStructureVisioncancer geneticsdiabetes mellitus geneticsdrug discoveryenzyme structureglutaric acidemiaglycosyltransferasehuman diseaseinhibitormultidisciplinarynanomolarprogramsprotein degradationproteostasissensorstructural biologytherapeutic target
项目摘要
Project Summary
The overall research in the Lazarus Lab revolves around studying energy and protein homeostasis as it
relates to human disease using chemical biology and structural biology. We have several multidisciplinary
projects around this topic, including studying the ULK family of autophagy kinases and pseudokinases, lysine
metabolism disorders, and other kinases related to diabetes and cancer. Over the last 4 years, we have used
crystallography and chemical biology to help develop highly potent inhibitors of the metabolic sensor O-GlcNAc
transferase, solved the first structures and identify the first chemical probes of the ULK pseudokinase linked to
schizophrenia ULK4, and helped elucidate the first structure of an enzyme in the lysine metabolic pathway
DHTKD1.
Our goals over the next five-year period include further understanding of the ULK family of kinases.
ULK1 and ULK2 are the main initiating enzymes for the autophagy pathway, a conserved metabolic pathway
whereby cellular components get degraded for quality control and energy generation during starvation. The
pathway is thought to be critical in diseases ranging from cancer to Alzheimer’s disease, yet there are still
major gaps in our understanding of the pathway. What happens to cells when you inhibit autophagy at different
stages of the pathway in different disease models using selective probes? What is the role of the mysterious
family member ULK4, which has no catalytic activity but binds ATP with nanomolar potency and likely has a
function for the ATP binding. Another major goal involves the lysine metabolic pathway, in which several inborn
errors of metabolism are found. How do the enzymes in this pathway function, and can inhibiting other
enzymes in this pathway block the toxic buildup of intermediates that arise in glutaric aciduria patients?
The overall vision of the research program is to develop chemical probes and obtain high-resolution
crystal structures to better understand key enzymes in these metabolic pathways and determine if they are
therapeutic targets for human diseases. Within the context of the Mount Sinai research community, we are
well-positioned to collaborate with our colleagues to leverage our strength in chemical and structural biology to
provide molecular understanding that synergizes with our colleagues’ expertise in human biology or medicinal
chemistry, like our overarching collaboration with the Drug Discovery Institute here and our collaborations that
involve cancer, genetic diseases, diabetes, and neurodegeneration. As new opportunities arise, we can
provide our expertise in the molecular underpinnings of glycosyltransferases, kinases and pseudokinases, and
protein degradation pathways to develop new projects supported by the MIRA funding, while still focusing on
the core projects described above.
项目概要
拉撒路实验室的整体研究围绕着能量和蛋白质稳态的研究展开,因为它
我们有几个跨学科的领域,涉及利用化学生物学和结构生物学研究人类疾病。
围绕该主题的项目,包括研究自噬激酶和假激酶、赖氨酸的 ULK 家族
在过去的 4 年里,我们使用了与糖尿病和癌症相关的代谢紊乱以及其他激酶。
晶体学和化学生物学有助于开发代谢传感器 O-GlcNAc 的高效抑制剂
转移酶,解决了第一个结构并鉴定了与 ULK 假激酶相关的第一个化学探针
精神分裂症 ULK4,并帮助阐明赖氨酸代谢途径中酶的第一个结构
DHTKD1。
我们未来五年的目标包括进一步了解 ULK 激酶家族。
ULK1 和 ULK2 是自噬途径(一种保守的代谢途径)的主要起始酶
因此,在饥饿期间,细胞成分会被降解,以用于质量控制和能量产生。
该通路被认为对从癌症到阿尔茨海默氏病等疾病至关重要,但仍然存在
当我们以不同的方式抑制自噬时,细胞会发生什么?
使用选择性探针在不同疾病模型中的通路阶段有何作用?
家族成员 ULK4,它没有催化活性,但以纳摩尔效力结合 ATP,并且可能具有
ATP 结合的另一个主要目标涉及赖氨酸代谢途径,其中有几个先天性的。
发现代谢错误。该途径中的酶如何发挥作用,并且可以抑制其他途径。
该途径中的酶可以阻止戊二酸尿症患者中产生的中间体的毒性累积?
该研究计划的总体愿景是开发化学探针并获得高分辨率
晶体结构,以更好地了解这些代谢途径中的关键酶并确定它们是否
在西奈山研究界的背景下,我们正在研究人类疾病的治疗目标。
能够与我们的同事合作,利用我们在化学和结构生物学方面的优势
提供与我们同事在人类生物学或医学方面的专业知识相协同的分子理解
化学,例如我们与药物发现研究所的总体合作以及我们与
涉及癌症、遗传疾病、糖尿病和神经退行性疾病,随着新机遇的出现,我们可以做到。
提供我们在糖基转移酶、激酶和假激酶分子基础方面的专业知识,以及
蛋白质降解途径来开发由 MIRA 资金支持的新项目,同时仍然关注
上述核心项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Block Lazarus其他文献
Michael Block Lazarus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Block Lazarus', 18)}}的其他基金
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10194214 - 财政年份:2021
- 资助金额:
$ 46.45万 - 项目类别:
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10380139 - 财政年份:2021
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9381909 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9752600 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10769149 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
10226148 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic Disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10682910 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10662232 - 财政年份:2017
- 资助金额:
$ 46.45万 - 项目类别:
相似国自然基金
面向脑疾病高效可信诊断的多模态时空数据挖掘
- 批准号:62376065
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
- 批准号:82373110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向肺部疾病识别的噪声标签学习方法研究
- 批准号:62302032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于老年慢性乙肝患者共病模式构建疾病负担动态变化预测模型
- 批准号:82304246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向胃肠道疾病准确筛查的内窥镜视频质量评价方法研究
- 批准号:62371305
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Role of TTYH1 in mobilizing lipids and ApoE in glia: Implications for brain aging and neurodegeneration
TTYH1 在神经胶质细胞动员脂质和 ApoE 中的作用:对大脑衰老和神经退行性变的影响
- 批准号:
10644705 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Cystathionine Gamma Lyase (CSE) and Hydrogen Sulfide Regulation of Vascular Aging
胱硫醚γ裂解酶 (CSE) 和硫化氢对血管老化的调节
- 批准号:
10715408 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 46.45万 - 项目类别: