Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
基本信息
- 批准号:9381909
- 负责人:
- 金额:$ 40.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AutophagocytosisBiochemistryBiologyCell NucleusCell physiologyCellsChemicalsComplexCytoplasmCytoplasmic ProteinDiabetes MellitusDiseaseEnzymesEukaryotic CellGenetic TranscriptionGoalsHomeostasisLinkMalignant NeoplasmsMammalsMetabolicModificationNerve DegenerationNuclear ProteinNuclear ProteinsO-GlcNAc transferaseObesityOrganellesOrganismPathway interactionsPharmaceutical PreparationsPlayProtein GlycosylationProteinsQuality ControlRoleSignal TransductionSystemVisioncancer cellchemotherapyglycosylationhuman diseaseinhibitor/antagonistnovelpreventprotein degradationscreeningstructural biologysugartooltumor
项目摘要
Project Abstract
The overall goal of the lab is to study the role of energy homeostasis pathways in human disease using
structural and chemical tools. Our lab focuses on two major fundamental pathways: O-GlcNAcylation and
autophagy. The first major focus on the lab is on glycosylation, which plays a fundamental role in living organisms
and is misregulated in several human diseases. A unique form of glycosylation in mammals involves the essential
enzyme O-GlcNAc transferase (OGT), which dynamically transfers a single sugar on to nuclear and cytoplasmic
proteins to modulate signaling, transcription, and protein degradation. This single enzyme is responsible for
glycosylating over a thousand substrates. Aberrant OGT activity is associated with human diseases such as
cancer, diabetes, obesity, and neurodegeneration. However, the biology of this modification is quite complex
because of the abundance of substrates for a single enzyme. This complexity has prevented an understanding
of which substrates are important for human diseases, how OGT recognizes them, and how metabolic changes
alter the physiology of cells through this enzyme. We seek to better understand the mechanism of this
fundamental enzyme through a combination of biochemistry, structural biology, and chemical biology. Our major
goal is to clarify the complex role that nuclear and cytoplasmic protein glycosylation has in human disease.
Autophagy is a conserved pathway that eukaryotic cells use to recycle materials from proteins to whole
organelles for energy and quality control. It has recently been shown that cancer cells rely on autophagy to
satisfy their increased energy demands and to resist chemotherapy. To study autophagy, our major goals are
developing new chemical inhibitors of a key enzyme that initiates autophagy called ULK1. Our other goal is to
find novel synthetic lethal interactors with autophagy by discovering other drugs that synergistically target cells
when autophagy is inhibited. Our vision is to develop advance screening systems to better mimic tumors and
look for new combinations of treatment that rely on blocking autophagy.
项目摘要
该实验室的总体目标是利用能量稳态途径研究人类疾病中的作用
结构和化学工具。我们的实验室专注于两个主要的基本途径:O-GlcNAcylation 和
自噬。实验室的首要关注点是糖基化,它在生物体中发挥着基础作用
并且在几种人类疾病中受到错误调节。哺乳动物中糖基化的一种独特形式涉及必需的
O-GlcNAc 转移酶 (OGT),可动态地将单糖转移到细胞核和细胞质上
调节信号传导、转录和蛋白质降解的蛋白质。这种单一的酶负责
糖基化超过一千种底物。异常的 OGT 活性与人类疾病有关,例如
癌症、糖尿病、肥胖和神经退行性疾病。然而,这种修饰的生物学原理相当复杂
因为单一酶的底物丰富。这种复杂性阻碍了理解
哪些底物对人类疾病很重要、OGT 如何识别它们以及代谢如何变化
通过这种酶改变细胞的生理机能。我们寻求更好地理解这一机制
通过生物化学、结构生物学和化学生物学的结合来研究基本酶。我们的专业
目标是阐明核和细胞质蛋白糖基化在人类疾病中的复杂作用。
自噬是真核细胞用来回收从蛋白质到整体的物质的保守途径
用于能量和质量控制的细胞器。最近的研究表明,癌细胞依赖自噬
满足他们增加的能量需求并抵抗化疗。研究自噬,我们的主要目标是
开发一种名为 ULK1 的启动自噬的关键酶的新型化学抑制剂。我们的另一个目标是
通过发现协同靶向细胞的其他药物,找到具有自噬作用的新型合成致死相互作用物
当自噬受到抑制时。我们的愿景是开发先进的筛查系统,以更好地模拟肿瘤和
寻找依赖于阻断自噬的新治疗组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Block Lazarus其他文献
Michael Block Lazarus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Block Lazarus', 18)}}的其他基金
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10194214 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Exploring autophagy as a target for Alzheimer's Disease
探索自噬作为阿尔茨海默病的靶标
- 批准号:
10380139 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
9752600 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10769149 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and structural tools to study energy homeostasis pathways in cancer and diabetes
研究癌症和糖尿病能量稳态途径的化学和结构工具
- 批准号:
10226148 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10405224 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10662232 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
Chemical and Structural Approaches to Study Energy Homeostasis Pathways in Cancer and Metabolic Disorders
研究癌症和代谢紊乱能量稳态途径的化学和结构方法
- 批准号:
10682910 - 财政年份:2017
- 资助金额:
$ 40.26万 - 项目类别:
相似国自然基金
基于力学-生物化学信号通路的组织工程骨多尺度建模
- 批准号:61503419
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
蛋白质化学合成与生物学应用
- 批准号:21532004
- 批准年份:2015
- 资助金额:300.0 万元
- 项目类别:重点项目
镁离子转运蛋白CorC受腺苷类配体以及镁离子调控的分子机理的生物化学和结构生物学研究
- 批准号:31270792
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
衔接蛋白AP3D1 Ear结构域的结构与识别机制研究
- 批准号:31200577
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
生物分子与生命复杂性学术研讨会
- 批准号:31049002
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:专项基金项目
相似海外基金
Transcriptional Activation of p62 by the master antioxidant NRF2 in EBV latency
EBV潜伏期主要抗氧化剂NRF2对p62的转录激活
- 批准号:
10726975 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别:
Characterization of Altered Fatty Acid Trafficking in Triple-Negative Breast Cancer
三阴性乳腺癌中脂肪酸运输改变的特征
- 批准号:
10734556 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别:
A novel mitochondria-to-lysosome stress signaling pathway in degenerative disease and aging
退行性疾病和衰老中一种新的线粒体到溶酶体应激信号通路
- 批准号:
10722759 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别:
Mechanism of Substrate Unfolding by the AAA+ ATPase p97 and Binding Partners
AAA ATPase p97 和结合伙伴的底物解折叠机制
- 批准号:
10678124 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别:
2023 Phagocytes Gordon Research Conference and Gordon Research Seminar
2023吞噬细胞戈登研究大会暨戈登研究研讨会
- 批准号:
10683594 - 财政年份:2023
- 资助金额:
$ 40.26万 - 项目类别: