Sodium channel control of neuronal excitability
钠通道控制神经元兴奋性
基本信息
- 批准号:10394713
- 负责人:
- 金额:$ 20.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAffectAgonistArrhythmiaAzidesBiochemicalBiological AssayBiophysical ProcessBiophysicsBrainCalcium-Sensing ReceptorsCannabinoidsCellular biologyClinicalCollaborationsComplexCoupledCrosslinkerCyclic AMPDataDiseaseDoseElectrophysiology (science)ElementsEndocannabinoidsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGenerationsGilles de la Tourette syndromeGlycerolGoalsHuntington DiseaseHypercalcemiaIon ChannelIon Channel GatingKidney FailureKnowledgeLeadMalignant NeoplasmsMass Spectrum AnalysisMeasuresMediatingMolecularMood DisordersMusMuscle CellsMuscle SpasticityMuscle functionNerveNeurobiologyNeuronsNeuropathyPainPain managementParalysedPatch-Clamp TechniquesPathway interactionsPatientsPatternPeripheral Nervous System DiseasesPharmaceutical PreparationsPharmacologyPhosphatidylinositolsPhysiologicalPositioning AttributeProtein BiochemistryProtein IsoformsProteinsPsychotropic DrugsRegulationResolutionSecond Messenger SystemsSeizuresSignal PathwaySignal TransductionSliceSodium ChannelSpasmStreptavidinSystemTestingUnited States National Institutes of HealthWorkanandamideantagonistbasechemoproteomicscinacalcetcrosslinkdesignexperimental studyimprovedinnovationinorganic phosphateinterestknock-downlive cell imagingneocorticalneuronal cell bodyneuronal excitabilityneurotransmissionnew therapeutic targetnovelnovel therapeuticsperiodic paralysisreceptorscreening programsensorside effectsmall hairpin RNAtoolultraviolet irradiationvoltagevoltage gated channel
项目摘要
Voltage-gated sodium channels (VGSCs) are essential for action potential generation. Furthermore, drugs that
directly target VGSCs are widely used to treat common diseases, such as pain, mood disorders, muscle
spasms, seizures, and cardiac arrhythmias. However, side effects arise because of the widespread distribution
of VGSCs and cross-sensitivity of the various VGSC subtypes to blockers. In addition, these drugs are not
completely effective, underlining a substantial need for new drugs that target VGSCs. This has motivated us to
identify and characterize new mechanisms by which VGSC function can be regulated. Regulation of voltage-
gated ion channel function is an important pathway by which neuronal signaling and brain function is regulated,
and G-protein coupled receptors (GPCRs) form a major element of the endogenous transduction mechanisms
by which this occurs. However, unlike other ion channels, VGSCs have been assumed to be relatively
insensitive to modulation by GPCR signaling. We have recently identified a pathway that is modulated by
agents known to interact with the CaSR (calcium-sensing receptor). This pathway is widespread, present in the
vast majority of neocortical neurons, and strong enough to completely and reversibly block VGSC currents
when maximally stimulated. This novel, dynamic signaling pathway is positioned to substantially modulate
neuronal excitability and brain function. Detailed knowledge about the underlying mechanisms is crucial to
understand its many effects. The objectives of this proposal are to determine how CaSR modulators regulate
VGSCs. Using a combination of electrophysiology and unbiased biochemical approaches we will identify the
receptors mediating the inhibition of VGSC currents, measure the relative sensitivity to block of different VGSC
isoforms, and determine if the pathway differentially regulates action potentials at nerve terminals and soma.
These specific aims will test the hypothesis that CaSR modulators actions via VGSCs represent important new
pathways for modulating neuronal excitability. We are ideally suited to perform this project because of our
preliminary data and expertise. Our rationale is that the identification and characterization of a novel and
prevalent receptor(s) and downstream pathway will facilitate our understanding of a prevalent and potentially
powerful neurobiological signaling pathway. Successful completion of these specific aims will characterize new
drug targets and eventually will lead to new therapeutics to improve control of pain, seizures, muscle spasm,
and arrhythmias.
电压门控钠通道(VGSC)对于动作电位产生至关重要。此外,毒品
直接靶向VGSC被广泛用于治疗常见疾病,例如疼痛,情绪障碍,肌肉
痉挛,癫痫发作和心律不齐。但是,由于广泛的分布而产生副作用
VGSC的VGSC和各种VGSC子类型对阻滞剂的交叉敏感性。此外,这些药物不是
完全有效,强调了针对VGSC的新药物的巨大需求。这激发了我们
识别并表征可以调节VGSC函数的新机制。调节电压
门控离子通道功能是一个重要的途径,通过调节神经元信号传导和大脑功能,
和G蛋白偶联受体(GPCR)构成内源性转导机制的主要元素
发生这种情况。但是,与其他离子通道不同,VGSC被认为是相对的
GPCR信号传导对调制不敏感。我们最近确定了一个由
已知与CASR相互作用的药物(钙感应受体)。该途径很普遍,存在于
绝大多数新皮质神经元,足够强,可以完全和可逆地阻止VGSC电流
当最大刺激时。这个小说的动态信号通路定位为基本调制
神经元兴奋性和大脑功能。关于基本机制的详细知识对
了解其许多效果。该提案的目标是确定CASR调制器如何调节
VGSC。结合电生理学和无偏生化方法,我们将确定
介导VGSC电流抑制的受体,测量对不同VGSC块的相对灵敏度
同工型,并确定该途径是否在神经末端和SOMA上差异调节作用电位。
这些具体目的将检验CASR调节器通过VGSC的行动代表重要新的假设
调节神经元兴奋性的途径。我们非常适合执行该项目,因为我们
初步数据和专业知识。我们的理由是,小说的识别和特征
普遍的受体和下游途径将有助于我们对普遍存在的理解
强大的神经生物学信号通路。这些特定目标的成功完成将表征新的
药物靶标,最终将导致新的治疗剂,以改善对疼痛,癫痫发作,肌肉痉挛的控制,
和心律不齐。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen M Smith其他文献
Valproic acid and HIV-1 latency: beyond the sound bite
丙戊酸和 HIV-1 潜伏期:超越原话
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
Stephen M Smith - 通讯作者:
Stephen M Smith
Comprehensive Molecular Characterization of Polymorphous Adenocarcinoma, Cribriform Subtype: Identifying Novel Fusions and Fusion Partners.
多形性腺癌,筛状亚型的综合分子特征:识别新的融合和融合伴侣。
- DOI:
10.1016/j.modpat.2023.100305 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
E. Hahn;Bin Xu;N. Katabi;S. Dogan;Stephen M Smith;B. Perez–Ordoñez;Paras B. Patel;Christina MacMillan;Daniel J. Lubin;J. Gagan;I. Weinreb;J. Bishop - 通讯作者:
J. Bishop
New York City HIV superbug: fear or fear not?
纽约市艾滋病毒超级细菌:恐惧还是不恐惧?
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
Stephen M Smith - 通讯作者:
Stephen M Smith
Stephen M Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen M Smith', 18)}}的其他基金
Equipment Supplement: Sodium Channel Control of Neuronal Excitability
装备补充:钠通道控制神经元兴奋性
- 批准号:
10382711 - 财政年份:2020
- 资助金额:
$ 20.56万 - 项目类别:
Dynamic Chemical Regulation of Voltage-gated Sodium Channels
电压门控钠通道的动态化学调节
- 批准号:
10266071 - 财政年份:2015
- 资助金额:
$ 20.56万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Serotonergic modulation of the circuits and cell-types of the lateral habenula
外侧缰核电路和细胞类型的血清素调节
- 批准号:
10713125 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
- 批准号:
10823447 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Mechanisms of Hypoxia-Mediated Disturbances in Cerebral Maturation in a Fetal Ovine Model of Maternal Sleep Apnea
母体睡眠呼吸暂停胎羊模型中缺氧介导的大脑成熟障碍的机制
- 批准号:
10608612 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别: