Sodium channel control of neuronal excitability
钠通道控制神经元兴奋性
基本信息
- 批准号:10153825
- 负责人:
- 金额:$ 20.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAffectAgonistArrhythmiaAzidesBiochemicalBiological AssayBiophysical ProcessBiophysicsBrainCalcium-Sensing ReceptorsCannabinoidsCellular biologyClinicalCollaborationsComplexCoupledCrosslinkerCyclic AMPDataDiseaseDoseElectrophysiology (science)ElementsEndocannabinoidsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGenerationsGilles de la Tourette syndromeGlycerolGoalsHuntington DiseaseHypercalcemiaIon ChannelIon Channel GatingKidney FailureKnowledgeLeadMalignant NeoplasmsMass Spectrum AnalysisMeasuresMediatingMolecularMood DisordersMusMuscle CellsMuscle SpasticityMuscle functionNerveNeurobiologyNeuronsNeuropathyPainPain managementParalysedPatch-Clamp TechniquesPathway interactionsPatientsPatternPeripheral Nervous System DiseasesPharmaceutical PreparationsPharmacologyPhosphatidylinositolsPhysiologicalPositioning AttributeProtein BiochemistryProtein IsoformsProteinsPsychotropic DrugsRegulationResolutionSecond Messenger SystemsSeizuresSignal PathwaySignal TransductionSliceSodium ChannelSpasmStreptavidinSystemTestingUnited States National Institutes of HealthWorkanandamidebasechemoproteomicscinacalcetcrosslinkdesignexperimental studyimprovedinnovationinorganic phosphateinterestknock-downlive cell imagingneocorticalneuronal cell bodyneuronal excitabilityneurotransmissionnew therapeutic targetnovelnovel therapeuticsperiodic paralysisreceptorscreening programsensorside effectsmall hairpin RNAtoolultraviolet irradiationvoltagevoltage gated channel
项目摘要
Voltage-gated sodium channels (VGSCs) are essential for action potential generation. Furthermore, drugs that
directly target VGSCs are widely used to treat common diseases, such as pain, mood disorders, muscle
spasms, seizures, and cardiac arrhythmias. However, side effects arise because of the widespread distribution
of VGSCs and cross-sensitivity of the various VGSC subtypes to blockers. In addition, these drugs are not
completely effective, underlining a substantial need for new drugs that target VGSCs. This has motivated us to
identify and characterize new mechanisms by which VGSC function can be regulated. Regulation of voltage-
gated ion channel function is an important pathway by which neuronal signaling and brain function is regulated,
and G-protein coupled receptors (GPCRs) form a major element of the endogenous transduction mechanisms
by which this occurs. However, unlike other ion channels, VGSCs have been assumed to be relatively
insensitive to modulation by GPCR signaling. We have recently identified a pathway that is modulated by
agents known to interact with the CaSR (calcium-sensing receptor). This pathway is widespread, present in the
vast majority of neocortical neurons, and strong enough to completely and reversibly block VGSC currents
when maximally stimulated. This novel, dynamic signaling pathway is positioned to substantially modulate
neuronal excitability and brain function. Detailed knowledge about the underlying mechanisms is crucial to
understand its many effects. The objectives of this proposal are to determine how CaSR modulators regulate
VGSCs. Using a combination of electrophysiology and unbiased biochemical approaches we will identify the
receptors mediating the inhibition of VGSC currents, measure the relative sensitivity to block of different VGSC
isoforms, and determine if the pathway differentially regulates action potentials at nerve terminals and soma.
These specific aims will test the hypothesis that CaSR modulators actions via VGSCs represent important new
pathways for modulating neuronal excitability. We are ideally suited to perform this project because of our
preliminary data and expertise. Our rationale is that the identification and characterization of a novel and
prevalent receptor(s) and downstream pathway will facilitate our understanding of a prevalent and potentially
powerful neurobiological signaling pathway. Successful completion of these specific aims will characterize new
drug targets and eventually will lead to new therapeutics to improve control of pain, seizures, muscle spasm,
and arrhythmias.
电压门控钠通道 (VGSC) 对于动作电位的产生至关重要。此外,药物
直接靶向 VGSC 被广泛用于治疗常见疾病,如疼痛、情绪障碍、肌肉
痉挛、癫痫发作和心律失常。然而,由于广泛分布,会产生副作用
VGSC 的数量以及各种 VGSC 亚型对阻断剂的交叉敏感性。另外,这些药物不
完全有效,突显了对针对 VGSC 的新药的巨大需求。这激励我们
识别和表征可调节 VGSC 功能的新机制。电压调节-
门控离子通道功能是调节神经元信号传导和脑功能的重要途径,
和 G 蛋白偶联受体 (GPCR) 构成内源性转导机制的主要元素
从而发生这种情况。然而,与其他离子通道不同,VGSCs 被认为是相对
对 GPCR 信号的调节不敏感。我们最近发现了一条受以下因素调节的途径
已知与 CaSR(钙敏感受体)相互作用的药物。该途径广泛存在于
绝大多数新皮质神经元,并且足够强大以完全且可逆地阻断 VGSC 电流
当受到最大刺激时。这种新颖的动态信号传导途径旨在显着调节
神经元兴奋性和大脑功能。有关基本机制的详细了解对于
了解它的多种作用。该提案的目标是确定 CaSR 调节剂如何调节
VGSC。结合使用电生理学和公正的生化方法,我们将确定
介导 VGSC 电流抑制的受体,测量对不同 VGSC 阻断的相对敏感性
亚型,并确定该通路是否差异调节神经末梢和体细胞的动作电位。
这些具体目标将检验以下假设:CaSR 调节剂通过 VGSC 的作用代表了重要的新功能
调节神经元兴奋性的途径。我们非常适合执行这个项目,因为我们
初步数据和专业知识。我们的理由是,小说的识别和特征
流行的受体和下游途径将有助于我们了解流行的和潜在的
强大的神经生物学信号通路。成功完成这些具体目标将成为新的特征
药物靶向并最终将导致新的治疗方法来改善对疼痛、癫痫、肌肉痉挛的控制,
和心律失常。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen M Smith其他文献
Valproic acid and HIV-1 latency: beyond the sound bite
丙戊酸和 HIV-1 潜伏期:超越原话
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
Stephen M Smith - 通讯作者:
Stephen M Smith
Comprehensive Molecular Characterization of Polymorphous Adenocarcinoma, Cribriform Subtype: Identifying Novel Fusions and Fusion Partners.
多形性腺癌,筛状亚型的综合分子特征:识别新的融合和融合伴侣。
- DOI:
10.1016/j.modpat.2023.100305 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
E. Hahn;Bin Xu;N. Katabi;S. Dogan;Stephen M Smith;B. Perez–Ordoñez;Paras B. Patel;Christina MacMillan;Daniel J. Lubin;J. Gagan;I. Weinreb;J. Bishop - 通讯作者:
J. Bishop
New York City HIV superbug: fear or fear not?
纽约市艾滋病毒超级细菌:恐惧还是不恐惧?
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
Stephen M Smith - 通讯作者:
Stephen M Smith
Stephen M Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen M Smith', 18)}}的其他基金
Equipment Supplement: Sodium Channel Control of Neuronal Excitability
装备补充:钠通道控制神经元兴奋性
- 批准号:
10382711 - 财政年份:2020
- 资助金额:
$ 20.56万 - 项目类别:
Dynamic Chemical Regulation of Voltage-gated Sodium Channels
电压门控钠通道的动态化学调节
- 批准号:
10266071 - 财政年份:2015
- 资助金额:
$ 20.56万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
相似海外基金
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
- 批准号:
10823447 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Serotonergic modulation of the circuits and cell-types of the lateral habenula
外侧缰核电路和细胞类型的血清素调节
- 批准号:
10713125 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别:
Mechanisms of Hypoxia-Mediated Disturbances in Cerebral Maturation in a Fetal Ovine Model of Maternal Sleep Apnea
母体睡眠呼吸暂停胎羊模型中缺氧介导的大脑成熟障碍的机制
- 批准号:
10608612 - 财政年份:2023
- 资助金额:
$ 20.56万 - 项目类别: