Mechanisms Driving Metabolic Shifts in the Intestinal Epithelium
驱动肠上皮代谢变化的机制
基本信息
- 批准号:10390788
- 负责人:
- 金额:$ 41.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultAutomobile DrivingBindingBinding ProteinsBinding SitesBiogenesisBiological AssayCell RespirationCellsCellular Metabolic ProcessChromatin LoopColon CarcinomaDataDevelopmentDietDietary FatsDiseaseERR1 proteinElectron TransportEnergy-Generating ResourcesEnhancersEnterocytesEnvironmentEpithelialEpithelial CellsExposure toFatty AcidsGene ExpressionGenesGenetic ModelsGenetic TranscriptionGenomeGlycolysisGoalsHNF4A geneHealthHigh Fat DietHomeostasisHumanInfection preventionIntestinal DiseasesIntestinesKnock-outKnockout MiceLinkLiteratureLongevityMalignant NeoplasmsMediatingMetabolicMetabolic ControlMetabolismMitochondriaNatural regenerationNuclear ReceptorsNutrientOrganogenesisOrganoidsOxidative PhosphorylationOxygenPathologicPlayProcessProteomicsRegulationReportingResearchRespirationRoleShapesSourceStressTestingTherapeuticTissuesTransitional EpitheliumUp-RegulationVillusWorkYY1 Transcription Factorbasecell typedietarydietary excessenzyme activityepigenomicsepithelium regenerationestrogen-related receptorfatty acid oxidationfetalinsightintestinal epitheliummetabolomicsmouse modelmutant mouse modelnew technologynovelobesity riskobesogenicoxidationpromoterregenerativerepairedresponseresponse to injurystemstem cell divisionstem cellsstemnesstissue regenerationtranscription factortumorigenesis
项目摘要
Cells of intestinal epithelium do not exhibit a uniform metabolic state. Metabolic shifts accompany
transitions during adult stem-crypt-villus homeostasis. Metabolic shifts also occur in response to injury and in
colon cancer. The long term goal of this research is to define targetable metabolic regulatory processes to treat
diseases and disorders of the intestine. The immediate goal of this proposal is to define the regulatory
mechanisms that govern metabolic shifts during the epithelial cell lifespan.
OX-PHOS gene expression levels are high in intestinal stem cells, low in crypts, and highest in villus.
Dynamic expression of OX-PHOS genes parallels the metabolic transitions of the epithelium. However, the
mechanisms regulating cellular metabolism during epithelial cell transitions in the intestine are unclear. We
have generated new mouse models that identify transcription factors contributing to epithelial metabolism.
Aim 1 of the proposed studies will drill down to identify how the transcription factor, YY1, promotes
expression of genes that drive the electron transport chain. We will test the hypothesis that YY1 regulates
enhancer-promoter chromatin looping to promote expression of these key genes required for mitochondrial
respiration. We will also test the hypothesis that YY1 function differs in intestinal stem cells versus in their
progeny in crypts or in villus enterocytes. State-of-the-art epigenomic and proteomic assays will be employed
in the context of novel mouse models. We expect these regulatory mechanisms are important to drive
metabolic shifts that occur upon exposure to low oxygen environments during tissue damage/regeneration or in
oncogenesis. Therefore, we will also investigate these regulatory mechanisms in regenerative foci after tissue
damage to discern whether YY1 controls the metabolic shifts that accompany tissue regeneration.
Aim 2 will look at regulation of an important energy source for mitochondrial respiration – fatty acid
oxidation. We will test the hypothesis that HNF4 transcription factors promote fatty acid oxidation to support
intestinal stem cell renewal. A combination of metabolomics, epigenomics, and organoid-based assays will be
employed, using novel mouse models. We will further test the hypothesis that the Estrogen-Related Receptor
is an important and novel partner factor of HNF4, and that together, HNF4 and ESRRA shape the response of
the intestinal epithelium in response to a change in dietary fat. To our knowledge, these studies would provide
the first link between the core intestinal transcription factor regulatory networks and the metabolic state
required for intestinal stemness. Excess dietary fat increases risk for obesity and colon cancer. Our studies will
move the field forward in linking how diet and metabolites can intersect with the transcriptional regulatory
mechanisms of the intestinal epithelium. Together, these studies will reveal how metabolic transitions are
regulated in the intestine during normal homeostasis, as well as under pathological situations (epithelial
regeneration or under high-fat diet).
肠上皮细胞并没有表现出一致的代谢状态。
成人茎-隐窝-绒毛稳态期间的转变也会因损伤而发生。
这项研究的长期目标是确定可治疗的有针对性的代谢调节过程。
该提案的直接目标是确定肠道疾病和紊乱的监管。
控制上皮细胞寿命期间代谢变化的机制。
OX-PHOS 基因表达水平在肠干细胞中较高,在隐窝中较低,在绒毛中最高。
OX-PHOS 基因的动态表达与上皮的代谢转变平行。
肠道上皮细胞转变过程中细胞代谢的调节机制尚不清楚。
已经建立了新的小鼠模型,可以识别有助于上皮代谢的转录因子。
拟议研究的目标 1 将深入研究转录因子 YY1 如何促进
我们将检验 YY1 调节的基因的表达。
增强子-启动子染色质环化以促进线粒体所需的这些关键基因的表达
我们还将检验 YY1 功能在肠道干细胞中与其在肠道干细胞中不同的假设。
将采用最先进的表观基因组和蛋白质组测定法来检测隐窝或绒毛肠细胞中的后代。
我们预计这些调控机制对于驱动新的小鼠模型非常重要。
在组织损伤/再生期间或在暴露于低氧环境时发生的代谢变化
因此,我们还将研究组织后再生灶中的这些调节机制。
损伤来辨别 YY1 是否控制伴随组织再生的代谢变化。
目标 2 将着眼于线粒体呼吸重要能源——脂肪酸的调节
我们将检验 HNF4 转录因子促进脂肪酸氧化以支持这一假设。
肠道干细胞更新将结合代谢组学、表观基因组学和类器官分析。
我们将使用新的小鼠模型进一步检验雌激素相关受体的假设。
是 HNF4 的一个重要且新颖的伙伴因子,HNF4 和 ESRRA 共同塑造了以下反应:
据我们所知,这些研究将提供肠上皮对膳食脂肪变化的反应。
核心肠道转录因子调控网络与代谢状态之间的第一个联系
肠道干性所需的过量膳食脂肪会增加肥胖和结肠癌的风险。
推动该领域向前发展,将饮食和代谢物如何与转录调控相结合
这些研究将共同揭示肠上皮的代谢转变机制。
在正常稳态以及病理情况下(上皮细胞)在肠道中受到调节
再生或高脂肪饮食下)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL P. VERZI其他文献
MICHAEL P. VERZI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL P. VERZI', 18)}}的其他基金
Mechanisms Driving Metabolic Shifts in the Intestinal Epithelium
驱动肠上皮代谢变化的机制
- 批准号:
10773359 - 财政年份:2021
- 资助金额:
$ 41.95万 - 项目类别:
Mechanisms Driving Metabolic Shifts in the Intestinal Epithelium
驱动肠上皮代谢变化的机制
- 批准号:
10623339 - 财政年份:2021
- 资助金额:
$ 41.95万 - 项目类别:
Mechanisms underlying YY1 control of intestinal epithelial homeostasis
YY1控制肠上皮稳态的机制
- 批准号:
8565630 - 财政年份:2013
- 资助金额:
$ 41.95万 - 项目类别:
Mechanisms underlying YY1 control of intestinal epithelial homeostasis
YY1控制肠上皮稳态的机制
- 批准号:
8689012 - 财政年份:2013
- 资助金额:
$ 41.95万 - 项目类别:
Transcriptional Regulation of the Intestinal Epithelium
肠上皮的转录调控
- 批准号:
8384240 - 财政年份:2010
- 资助金额:
$ 41.95万 - 项目类别:
Transcriptional Regulation of the Intestinal Epithelium
肠上皮的转录调控
- 批准号:
8627233 - 财政年份:2010
- 资助金额:
$ 41.95万 - 项目类别:
Transcriptional Regulation of the Intestinal Epithelium
肠上皮的转录调控
- 批准号:
7952403 - 财政年份:2010
- 资助金额:
$ 41.95万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 41.95万 - 项目类别:
Challenging Classical Theories in Spatial Cognition: Contrasting Translator and Comparator Models of Human Retrosplenial Function
挑战空间认知中的经典理论:对比人类压后功能的翻译模型和比较模型
- 批准号:
10569490 - 财政年份:2023
- 资助金额:
$ 41.95万 - 项目类别:
Spatiotemporal control of tendon healing through modular, injectable hydrogel composites
通过模块化、可注射水凝胶复合材料对肌腱愈合的时空控制
- 批准号:
10605456 - 财政年份:2023
- 资助金额:
$ 41.95万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 41.95万 - 项目类别: