Preclinical testing of a 3D printed external scaffold device to prevent vein graft failure after coronary bypass graft surgery
3D 打印外部支架装置预防冠状动脉搭桥手术后静脉移植失败的临床前测试
基本信息
- 批准号:10385132
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAnimal ModelAnimal TestingAnimalsBilateralBiocompatible MaterialsBiomedical EngineeringCaliberCardiacChronicClinicalClinical ResearchCollaborationsContralateralCoronary ArteriosclerosisCoronary Artery BypassCoronary CirculationCoronary VesselsDataData AnalysesData SetDevelopmentDevice DesignsDevicesDiffuseDiseaseDoctor of MedicineDoctor of PhilosophyEngineeringFailureFollow-Up StudiesFoundationsFundingGenerationsGoalsGoldHarvestHeartHistopathologyHumanImmunohistochemistryImplantIn VitroInternationalInvestmentsLeadMechanicsMedical DeviceMedical Device DesignsMethodsModelingMorbidity - disease rateOperative Surgical ProceduresOutcomePatientsPerformancePharmacologyPhasePositioning AttributePostoperative PeriodPreclinical TestingPreventionPrintingProceduresRegulatory PathwayResearchResearch PersonnelSafetySaphenous VeinSecureSheepSmall Business Technology Transfer ResearchStenosisStimulusStressSurgeonSurgical ManagementTechniquesTestingTimeTissuesVariantVein graftbasebiodegradable scaffoldclinical practicecommercializationdesignelastomericfirst-in-humanfollow-upgraft failurehemodynamicshuman studyimmunogenicimprovedin vivoin vivo evaluationmechanical loadmechanical stimulusmortalitymultimodal datanext generationnovelpre-clinicalpreclinical studypreservationpressurepreventprofessorprototyperesponsescaffoldsheep modelstandard caresuccess
项目摘要
Saphenous vein graft (SVG) failure following coronary artery bypass grafting (CABG) is a critical clinical problem,
with recent studies revealing that as many as 25% of vein grafts develop stenosis within 12-18 months after
surgery, and up to 50% of grafts occlude within 5-10 years. CABG surgery is the gold standard treatment for
patients with severe multi-vessel disease, with over 370,000 procedures performed annually in the U.S. and
SVGs are used in 95% of cases. Identification of strategies and devices to prevent SVG failure represents a
pressing unmet clinical need. BioGraft will address this unmet need by developing an external biodegradable
scaffold device to prevent SVG failure. It is well established that mechanical loading contributes to the cellular
and structural changes leading to SVG failure. In current clinical practice, when the SVG is harvested and
implanted into the coronary circulation, it is subjected to an abrupt change in mechanical loading (20X change
in pressure, 4X change in flow-induced shear), triggering SVG wall remodeling and, often, maladaptation and
failure. Our foundational R01-funded research, which laid the scientific foundation for the founding of BioGraft,
showed that gradual increases in loading could mitigate or even eliminate graft failure. We demonstrated this
concept in vivo, showing more favorable graft adaptation with a first-generation design in an ovine model. Here,
to achieve a design that can be manufactured at scale, we propose a next-generation 3D printed biodegradable
scaffold, which we will refine and test in this proposal. To achieve our goals, we propose three specific aims. In
Aim 1, we will screen 3D-printed design candidates with ex vivo testing and degradation studies. This will allow
us to efficiently and inexpensively select designs matching desired targets. In Aim 2, we will perform pre-clinical
testing of the scaffold device in an established ovine carotid-jugular interpositional vein graft model of CABG
surgery. This will establish preliminary safety and efficacy. In Aim 3, we will characterize device performance
using mechanical testing and histopathology. These data will enable follow up fundraising, development of a
commercialization plan and initiation of FDA discussions. BioGraft’s founding team leverages a long-standing
engineering and clinical collaboration and recent partnerships with renowned investigators at Stanford and Duke
who hold IP for unique bioabsorbable materials and bring expertise in rapid 3D printing manufacturing methods.
We see a potential annual $1.6B total addressable market for the proposed device.
冠状动脉搭桥术(CABG)后隐静脉移植(SVG)衰竭是一个关键的临床问题,
最近的研究表明,多达25%的静脉移植物在12-18个月内发展
手术,最多50%的移植物在5 - 10年内阻塞。 CABG手术是黄金标准治疗
患有严重多血管疾病的患者,每年在美国进行370,000多次手术
SVG在95%的病例中使用。识别防止SVG失败的策略和设备代表
迫使未满足的临床需求。生物移植将通过开发外部生物降解来满足这种未满足的需求
脚手架设备可防止SVG故障。众所周知,机械负荷有助于细胞
以及导致SVG失败的结构变化。在当前的临床实践中,收获SVG并
植入冠状动脉循环中,它发生了机械载荷的突然变化(20倍变化
在压力下,流动诱导的剪切)发生了4倍),触发SVG壁重塑,并且通常不适当
失败。我们的基础R01资助的研究奠定了生物移植建立的科学基础,
表明,加载的成绩增加可能会减轻甚至消除等级失败。我们证明了这一点
体内概念,在卵巢模型中使用第一代设计显示出更有利的移植适应。这里,
为了实现可以大规模制造的设计,我们提出了下一代3D印刷生物降解的设计
脚手架,我们将在此提案中进行完善和测试。为了实现我们的目标,我们提出了三个具体目标。
AIM 1,我们将通过体内测试和降解研究筛选3D打印的设计候选。这将允许
我们有效且廉价地选择匹配所需目标的设计。在AIM 2中,我们将执行临床前
在已建立的卵子颈动脉 - 朱吉尔插入性静脉移植模型中测试脚手架装置的测试
外科手术。这将建立初步的安全性和效率。在AIM 3中,我们将表征设备性能
使用机械测试和组织病理学。这些数据将实现后续筹款,开发
FDA讨论的商业化计划和倡议。 Biograft的创始团队利用了一个长期的
工程和临床合作以及与斯坦福大学和杜克大学著名调查员的最新合作伙伴关系
谁持有IP的独特生物吸附材料,并在快速3D打印制造方法中带来了专业知识。
我们看到该拟议设备的潜在年度$ 1.6B总可寻址市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison L Marsden其他文献
Alison L Marsden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison L Marsden', 18)}}的其他基金
Computational Medicine in the Heart, Integrated Training Program
心脏计算医学综合培训计划
- 批准号:
10556918 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10412769 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10487534 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10259714 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Automated data curation to ensure model credibility in the Vascular Model Repository
自动数据管理以确保血管模型存储库中模型的可信度
- 批准号:
10175029 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10020975 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Automated data curation to ensure model credibility in the Vascular Model Repository
自动数据管理以确保血管模型存储库中模型的可信度
- 批准号:
10016840 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Enabling reliable cardiovascular simulations via uncertainty quantification
通过不确定性量化实现可靠的心血管模拟
- 批准号:
9030537 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
Enabling reliable cardiovascular simulations via uncertainty quantification
通过不确定性量化实现可靠的心血管模拟
- 批准号:
9751081 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
Enabling reliable cardiovascular simulations via uncertainty quantification
通过不确定性量化实现可靠的心血管模拟
- 批准号:
9348646 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
相似国自然基金
直书写3D打印应变传感器性能退化机制与耐久性设计方法
- 批准号:12372078
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
3D打印工厂社群建模及其客户化大批量群智生产机理与方法
- 批准号:52375512
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全固态钠离子电池的3D打印制备及性能研究
- 批准号:52372090
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别: