Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy

用于安全实施电子闪光放射治疗的超快速成像

基本信息

  • 批准号:
    10384307
  • 负责人:
  • 金额:
    $ 27.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-16 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Abstract Radiation therapy is a supplementary curative treatment used adjuvant with most surgery and chemotherapy, being delivered to nearly 1 out of every 4 people in their lifetime. While image guidance and conformal planning reduced the dose to healthy tissue, there is still a substantial risk of tissue damage that sets the upper limit of dose deposited to the tumor. A recent radical approach to minimize healthy tissue damage was demonstrated with ultra-high dose rate irradiation, and is known as the FLASH effect. This treatment operates at dose rates 1000x higher than in conventional mode, and by delivering an entire treatment course in 100 millisecond, it promises a reduction of radiation-induced toxicities by 10-50%. Several clinical centers, including Dartmouth Hitchcock Clinic, demonstrated that an existing clinical linac can be reversibly converted into an ultra-high dose rate electron source. This modification shows enormous translational potential to deliver electron FLASH (eFLASH) in any radiotherapy center using existing systems. However, while most research in the field is focused on elucidating the radiobiological mechanisms of FLASH, work towards mitigating the risks of FLASH is largely untouched, yet will be pivotal for wide clinical implementation. New techniques for detection monitoring radiation need to be developed due to the millisecond timescales at which FLASH operates which make traditional methods unsuitable. In this project, we exploit the uniqueness of DoseOptics BeamSiteTM system, a recently 510(k) cleared single photon capable camera designed to monitor conventional radiotherapy providing the first direct videos of the radiation dose delivery. BeamSite images are used by radiation therapists to monitor radiation delivery real-time. Clinical use has shown that routine monitoring of radiotherapy can reveal sub-optimal delivery which can be addressed by the therapists as needed. More importantly, it offers an automatic detection of beam and patient misalignments and delivery errors, and therefore it is very scalable even to the ultra-fast FLASH application. In this Phase I project we propose to develop an ultra-fast version of the BeamSite camera capable of tracking the beam on patients at kiloframe/s frame rate, which is required to keep up with the standard 360 Hz beam pulse rate in order to provide critically needed beam location and a linear and scalable dosimetry at these ultra-high dose rates. Once the camera is developed, these methods will be studied on DHMC’s existing clinical dual-purpose FLASH linac. The current proposal provides resources for the goals of: (i) developing a hardware prototype of an ultra-fast Cherenkov camera equipped with optimized, firmware-based algorithms, and (ii) demonstrating its capabilities for detecting beam deviations and dose on an existing eFLASH linac. The work includes hardware and software support and development, and eFLASH resources at Dartmouth Hitchcock to be leveraged towards these goals.
抽象的 放射治疗是一种补充治疗疗法,用于调整大多数手术和化学疗法, 一生中每4个人中几乎可以送达1人。而图像指导和保形计划 降低了对健康组织的剂量,仍然存在组织损伤的巨大风险,使上限的上限 沉积在肿瘤上的剂量。最近证明了一种最小化健康组织损伤的根本方法 具有超高剂量率照射,称为闪光效应。该治疗以剂量率运行 比常规模式高1000倍,通过以100毫秒的方式提供整个治疗课程 承诺将辐射引起的毒性降低10-50%。包括达特茅斯在内的几个临床中心 希区柯克诊所(Hitchcock Clinic 速率电子源。这种修改显示了传递电子闪光的巨大翻译潜力 (EFLASH)使用现有系统的任何放射疗法中心。但是,尽管该领域的大多数研究都集中在 关于阐明闪光的放射生物学机制,致力于减轻闪光的风险很大程度上是 未经触摸,但对于广泛的临床实施将是关键的。检测监测辐射的新技术 需要开发由于闪光灯运行的毫秒时尺度,这使得传统 方法不合适。在这个项目中,我们探讨了doseoptics beamsitetm系统的独特性,最近 510(k)清除了单个光子的摄像机,旨在监视传统放射疗法,提供了第一个 辐射剂量传递的直接视频。辐射治疗师使用光束点图像来监测辐射 实时交付。临床用途表明,放射疗法的常规监测可以揭示出亚最佳分娩 治疗师可以根据需要解决。更重要的是,它提供了光束的自动检测 以及患者的未对准和交货错误,因此即使超快速闪光也非常可扩展 应用。在这个阶段我的项目中,我们建议开发具有梁置摄像头的超快速版本 按照千射击率/s帧速率跟踪患者的光束,这是跟上标准360所必需的 Hz梁脉冲速率为了提供急需的束位置和可在 这些超高剂量率。一旦开发了相机,这些方法将在DHMC上进行研究 临床双用药闪光灯线。当前的提案为目标提供了资源:(i)开发一个 配备了优化的,基于固件的算法的超快速Cherenkov摄像头的硬件原型 (ii)证明其在现有的Eflash Linac上检测光束出发和剂量的能力。工作 包括硬件和软件支持和开发,以及达特茅斯·希区柯克的Eflash资源 要朝着这些目标掌握。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Petr Bruza的其他基金

Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
  • 批准号:
    10708158
    10708158
  • 财政年份:
    2021
  • 资助金额:
    $ 27.95万
    $ 27.95万
  • 项目类别:
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
  • 批准号:
    10603353
    10603353
  • 财政年份:
    2021
  • 资助金额:
    $ 27.95万
    $ 27.95万
  • 项目类别:

相似国自然基金

穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
  • 批准号:
    82303680
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
  • 批准号:
    32371440
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
  • 批准号:
    32371518
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
  • 批准号:
    82341040
  • 批准年份:
    2023
  • 资助金额:
    100 万元
  • 项目类别:
    专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
  • 批准号:
    82341036
  • 批准年份:
    2023
  • 资助金额:
    110 万元
  • 项目类别:
    专项基金项目

相似海外基金

Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
  • 批准号:
    10708575
    10708575
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
    $ 27.95万
  • 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
  • 批准号:
    10575550
    10575550
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
    $ 27.95万
  • 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
    $ 27.95万
  • 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
  • 批准号:
    10712793
    10712793
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
    $ 27.95万
  • 项目类别:
Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
  • 批准号:
    10654253
    10654253
  • 财政年份:
    2023
  • 资助金额:
    $ 27.95万
    $ 27.95万
  • 项目类别: