Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
基本信息
- 批准号:10708158
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdjuvantAnimalsCalibrationCharacteristicsClinicalClinical TrialsCollaborationsCommercial gradeComplexComputer softwareDepositionDetectionDevicesDocumentationDoseDose LimitingDose RateElectron BeamElectronicsElectronsEngineeringEnsureEnvironmentEventGoalsGrantHumanImageIndustryInterruptionKansasLocationMeasuresMedicalMedical centerMedicineMethodsModificationMonitorNormal tissue morphologyOperative Surgical ProceduresOutputPatientsPerformancePersonsPhasePhysicsPhysiologic pulsePositioning AttributeProtonsRadiationRadiation MonitoringRadiation OncologyRadiation therapyResearchResolutionResourcesRiskRunningSafetyScanningSchoolsSeaSeriesSpeedStructureSynchrocyclotronSystemTestingTissuesToxic effectTranslationsTreatment outcomeUnited StatesUniversitiesValidationWorkcancer therapychemotherapycherenkov imagingclinical implementationclinical research siteclinical translationconventional therapycurative treatmentsdesigndetection methoddetection platformdosimetryefficacy clinical trialimage guidedimaging systemimprovedirradiationmaltreatmentmillisecondperformance testspreclinical studyproton beamprototyperisk minimizationrisk mitigationsensorspatiotemporaltooltranslation to humanstranslational potentialtreatment planningtumor
项目摘要
Abstract
Radiation therapy is a supplementary curative treatment used adjuvant with most surgery and chemotherapy,
being delivered to nearly 1 out of every 4 people in their lifetime. While image guidance and conformal planning
reduced the dose to healthy tissue, there is still a substantial risk of tissue damage that sets the upper limit of
dose deposited to the tumor. Recently the minimization of healthy tissue damage was demonstrated to occur
when ultra-high dose rates (UHDR) were used for irradiation, known as the FLASH effect. UHDR are defined as
a complex set of high average dose rates (>40 Gy/s), instantaneous dose rates (>106 Gy/s), total dose values
(>8Gy) and temporal pulse structures. FLASH promises a reduction in normal tissue toxicity by 20-50% and our
clinical site partner Dartmouth-Hitchcock, has been the first to demonstrate routine weekly delivery of FLASH on
a clinically used linac. This modification shows enormous translational potential to deliver electron FLASH
(eFLASH) in any radiotherapy center using existing systems. However, while most research in the field is focused
on elucidating the radiobiological mechanisms of FLASH, work towards mitigating the risks of FLASH is largely
untouched, yet will be pivotal for wider clinical implementation. New techniques for detection monitoring of
radiation need to be developed due to the millisecond timescales at which FLASH operates which make
traditional methods unsuitable. In this project, we have leveraged our camera platform, BeamSite®, the world’s
first video system for radiotherapy, now FDA cleared and in use clinically, to developed BeamSite-ULTRA,
specifically for imaging FLASH. In our Phase I grant, we successfully demonstrated the ability to image at the
high frame rates and transfer speeds necessary to capture a single beam pulse energy in phantoms and on
tissue. In this Phase II, we will advance BeamSite-ULTRA as a robust, manufacturable, and FDA clearable
commercial system. We will quantify both spatial and temporal pulse structures, demonstrate beam-on and
gating-off potential of the system, and establish the capabilities in both proton and electron FLASH clinical
settings. The work includes an extensive team of industry and academic medicine colleagues, using the eFLASH
resources at Dartmouth-Hitchcock Medical Center and the proton treatment facilities at the University of Kansas
Medical Center.
抽象的
放射治疗是一种补充治疗疗法,用于调整大多数手术和化学疗法,
一生中每4个人中几乎可以送达1人。而图像指导和保形计划
降低了对健康组织的剂量,仍然存在组织损伤的巨大风险,使上限的上限
沉积在肿瘤上的剂量。最近证明健康组织损伤的最小化发生了
当使用超高剂量率(UHDR)进行辐照时,称为闪光效应。 UHDR定义为
一组复杂的高平均剂量率(> 40 Gy/s),瞬时剂量率(> 106 Gy/s),总剂量值
(> 8Gy)和临时脉冲结构。 Flash承诺将正常组织毒性降低20-50%,而我们
临床现场合作伙伴达特茅斯 - 希奇科克(Dartmouth-Hitchcock
临床使用的Linac。这种修改显示了传递电子闪光的巨大翻译潜力
(EFLASH)使用现有系统的任何放射疗法中心。但是,尽管该领域的大多数研究都集中在
关于阐明闪光的放射生物学机制,致力于减轻闪光的风险很大程度上是
未经触摸,但对于更广泛的临床实施将是关键的。用于检测监视的新技术
由于闪光灯的操作,需要开发辐射
传统方法不合适。在这个项目中,我们利用了我们的相机平台Beamsite®,世界的
第一个用于放射疗法的视频系统,如今已清除FDA并在临床上使用,用于开发Beamsite-ultra,
专门用于成像闪光灯。在我们阶段的授予中,我们成功地证明了在
捕获幻像和捕获单个梁脉冲能所需的高帧速率和传输速度
组织。在这二阶段中,我们将推动良好,制造和FDA可清除
商业系统。我们将量化空间和临时脉冲结构,展示梁孔,并且
系统的门控潜力,并在质子和电子闪光灯临床上建立功能
设置。这项工作包括使用Eflash的广泛的行业和学术医学同事团队
达特茅斯 - 希区柯克医疗中心的资源和堪萨斯大学的质子治疗设施
医疗中心。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two-dimensional time-resolved scintillating sheet monitoring of proton pencil beam scanning FLASH mouse irradiations.
质子笔形束扫描 FLASH 小鼠照射的二维时间分辨闪烁片监测。
- DOI:10.1002/mp.17049
- 发表时间:2024
- 期刊:
- 影响因子:3.8
- 作者:Kanouta,Eleni;Bruza,Petr;Johansen,JacobGraversen;Kristensen,Line;Sørensen,BritaSingers;Poulsen,PerRugaard
- 通讯作者:Poulsen,PerRugaard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petr Bruza其他文献
Petr Bruza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petr Bruza', 18)}}的其他基金
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
- 批准号:
10384307 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
- 批准号:
10603353 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脊椎动物胚胎发育单细胞磷酸化蛋白质组高通量高灵敏度分析新技术新方法
- 批准号:22374084
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新疆旱獭等啮齿动物携带病毒的病原学与病原生态学研究
- 批准号:32300424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Signal Processing Along the Auditory Pathway: Changes Following Noise Exposure
沿着听觉通路的信号处理:噪声暴露后的变化
- 批准号:
10536262 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
A Smart Semiconductor based Integrated Continuous Diabetes Monitoring Platform
基于智能半导体的集成连续糖尿病监测平台
- 批准号:
10900360 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
A novel cell-based platform to study human circadian disorders
研究人类昼夜节律紊乱的新型细胞平台
- 批准号:
10736091 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别: