Neurotrophic factor trafficking and signaling in development and disease
发育和疾病中的神经营养因子运输和信号传导
基本信息
- 批准号:10377384
- 负责人:
- 金额:$ 40.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAddressAdhesionsAnabolismAttenuatedAxonAxonal TransportBindingBiochemicalBiologicalBiological ProcessCell membraneCellsCellular biologyCommunicationComplementCuesDataDestinationsDevelopmentDiffuseDiseaseEndocytosisEnsureEventFamilyFeedbackFluorescence MicroscopyGoalsGrowthGrowth FactorHealthImageInjuryKineticsKnock-in MouseLengthLigandsMaintenanceMediatingMembrane ProteinsMembrane Transport ProteinsModelingMonitorMusNatural regenerationNerveNerve Growth Factor ReceptorsNerve Growth FactorsNervous system structureNeurobiologyNeuronsNeurotrophic Tyrosine Kinase Receptor Type 1OrganellesPTPN1 genePeripheralPhosphoric Monoester HydrolasesPhosphorylationPoint MutationPresynaptic TerminalsProcessProtein Tyrosine KinaseProtein Tyrosine PhosphataseProteinsReceptor CellReceptor Protein-Tyrosine KinasesReceptor SignalingRecovery of FunctionRecruitment ActivityRoleSignal TransductionSignaling ProteinSorting - Cell MovementSurfaceSynapsesSynaptic TransmissionTestingTimeTissuesTyrosineTyrosine Phosphorylationanterograde transportaxon growthbaseexperimental studyin vivoinflammatory paininsightmetermillimeternerve repairnerve supplyneurodevelopmentneuron developmentneuronal cell bodyneurotrophic factorpreventprotein functionreceptorreceptor internalizationresponseretrograde transportscale uptraffickingtranscytosis
项目摘要
A fundamental question in neuronal cell biology is how membrane proteins are
transported long-distance to axons after biosynthesis in cell bodies. Axon targeting of
membrane proteins is critical for the formation and maintenance of neuronal connections
and for a functional nervous system. Yet, how most membrane proteins are delivered to
axons remains undefined.
A long-held view in neurobiology is that signaling receptors are constitutively
delivered to axons via secretory trafficking. In contrast, we found that TrkA neurotrophin
receptors that are essential regulators of neuron survival, axon growth, and inflammatory
pain are actively recruited to axons via transcytosis, an endocytosis-based mechanism
where receptors embedded in soma surfaces are internalized and anterogradely
transported to axons. Strikingly, anterograde TrkA transcytosis is triggered by the ligand,
Nerve Growth Factor (NGF), acting on axon terminals, suggesting a positive feedback
mechanism that serves to dynamically scale up receptor availability in axons during times
of need. Furthermore, we identified that TrkA transcytosis is primed by the activity of
PTP1B, an ER-resident protein tyrosine phosphatase, in cell bodies. The overall goal of
this application is to elucidate the signaling and trafficking mechanisms underlying a
poorly characterized mode of ligand-triggered targeting of receptors to axons. In Aim 1,
we will define NGF-mediated mechanisms that initiate transcytosis in cell bodies,
elucidate the trafficking itinerary and transport kinetics of receptor transcytosis, and
investigate TrkA transcytosis in vivo. In Aim 2, we will test the hypothesis that ER-
anchored PTP1B phosphatase promotes a gain of TrkA biological function by controlling
the long-distance transcytosis of receptors. We will employ live imaging, biochemical, and
functional analyses in compartmentalized neuron cultures in combination with in vivo
analyses of genetically modified mice to accomplish these goals. These studies will
address a fundamental, yet poorly studied, cell biological question of how signaling
receptors are directed to axons, and will provide insight into specialized mechanisms that
enhance neuronal responsiveness to spatially acting extrinsic cues.
神经细胞生物学的一个基本问题是膜蛋白如何
在细胞体内生物合成后长距离运输至轴突。轴突靶向
膜蛋白对于神经元连接的形成和维持至关重要
以及功能性神经系统。然而,大多数膜蛋白是如何传递到
轴突仍未定义。
神经生物学中长期持有的观点是信号受体是组成型的
通过分泌运输传递至轴突。相反,我们发现 TrkA 神经营养素
受体是神经元存活、轴突生长和炎症的重要调节因子
疼痛通过转胞吞作用主动招募到轴突,转胞吞作用是一种基于内吞作用的机制
嵌入体细胞表面的受体被内化并顺行
运输到轴突。引人注目的是,顺行 TrkA 转胞吞作用是由配体触发的,
神经生长因子(NGF),作用于轴突末梢,表明正反馈
用于动态扩大轴突中受体可用性的机制
的需要。此外,我们发现 TrkA 转胞吞作用是由以下活性引发的:
PTP1B 是细胞体内的一种内质网驻留蛋白酪氨酸磷酸酶。总体目标为
该应用程序旨在阐明潜在的信号传导和贩运机制
配体触发的受体靶向轴突的模式尚不明确。在目标 1 中,
我们将定义 NGF 介导的启动细胞体转胞吞作用的机制,
阐明受体转胞吞作用的运输行程和运输动力学,以及
研究体内 TrkA 转胞吞作用。在目标 2 中,我们将检验以下假设:ER-
锚定 PTP1B 磷酸酶通过控制促进 TrkA 生物学功能的获得
受体的长距离转胞吞作用。我们将采用实时成像、生化和
区室神经元培养物与体内功能相结合的功能分析
对转基因小鼠进行分析以实现这些目标。这些研究将
解决一个基本但研究很少的细胞生物学问题,即信号传导如何
受体针对轴突,并将提供对特殊机制的见解
增强神经元对空间作用的外在线索的反应性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rejji Kuruvilla其他文献
Rejji Kuruvilla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rejji Kuruvilla', 18)}}的其他基金
2023 Neurotrophic Mechanisms in Health and Disease
2023 健康与疾病中的神经营养机制
- 批准号:
10654336 - 财政年份:2023
- 资助金额:
$ 40.03万 - 项目类别:
Neuron-satellite glia interactions in the sympathetic nervous system
交感神经系统中神经元-卫星胶质细胞的相互作用
- 批准号:
10719545 - 财政年份:2023
- 资助金额:
$ 40.03万 - 项目类别:
Coupled axonal protein synthesis and lipidation in axon growth and homeostasis
轴突生长和稳态中的耦合轴突蛋白合成和脂化
- 批准号:
10318573 - 财政年份:2019
- 资助金额:
$ 40.03万 - 项目类别:
Neurotrophic factor trafficking and signaling in development and disease
发育和疾病中的神经营养因子运输和信号传导
- 批准号:
9897598 - 财政年份:2019
- 资助金额:
$ 40.03万 - 项目类别:
2019 Neurotrophic Mechanisms in Health and Disease Gordon Research Conference
2019年健康与疾病中的神经营养机制戈登研究会议
- 批准号:
9755039 - 财政年份:2019
- 资助金额:
$ 40.03万 - 项目类别:
Coupled axonal protein synthesis and lipidation in axon growth and homeostasis
轴突生长和稳态中的耦合轴突蛋白合成和脂化
- 批准号:
10056229 - 财政年份:2019
- 资助金额:
$ 40.03万 - 项目类别:
Coupled axonal protein synthesis and lipidation in axon growth and homeostasis
轴突生长和稳态中的耦合轴突蛋白合成和脂化
- 批准号:
10534132 - 财政年份:2019
- 资助金额:
$ 40.03万 - 项目类别:
Sympathetic innervation in pancreatic development and function
胰腺发育和功能中的交感神经支配
- 批准号:
8751267 - 财政年份:2014
- 资助金额:
$ 40.03万 - 项目类别:
Sympathetic innervation in pancreatic development and function
胰腺发育和功能中的交感神经支配
- 批准号:
8890854 - 财政年份:2014
- 资助金额:
$ 40.03万 - 项目类别:
Neurotrophin mechanisms in neural development and disease
神经营养蛋白在神经发育和疾病中的机制
- 批准号:
8533037 - 财政年份:2011
- 资助金额:
$ 40.03万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Post-transcriptional mechanisms of centrosome regulation
中心体调控的转录后机制
- 批准号:
10393737 - 财政年份:2020
- 资助金额:
$ 40.03万 - 项目类别:
Cilia as a biomarker of CNS vascular health
纤毛作为中枢神经系统血管健康的生物标志物
- 批准号:
10512823 - 财政年份:2020
- 资助金额:
$ 40.03万 - 项目类别:
Cilia as a biomarker of CNS vascular health
纤毛作为中枢神经系统血管健康的生物标志物
- 批准号:
10701003 - 财政年份:2020
- 资助金额:
$ 40.03万 - 项目类别:
Post-transcriptional mechanisms of centrosome regulation
中心体调控的转录后机制
- 批准号:
10438769 - 财政年份:2020
- 资助金额:
$ 40.03万 - 项目类别:
Cilia as a biomarker of CNS vascular health
纤毛作为中枢神经系统血管健康的生物标志物
- 批准号:
10252928 - 财政年份:2020
- 资助金额:
$ 40.03万 - 项目类别: