Mitonuclear genetics of complex traits in Drosophila
果蝇复杂性状的线粒体核遗传学
基本信息
- 批准号:10377905
- 负责人:
- 金额:$ 38.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAgeBiological AssayBiologyChildComplexComplex Genetic TraitDevelopmentDiseaseDrosophila genusEnsureEnvironmentEnvironmental Risk FactorEpigenetic ProcessFemaleFoundationsGene ExpressionGene MutationGenesGeneticGenetic DriftGenetic ScreeningGenetic VariationGenomeGenomicsGenotypeIncidenceIndividualJointsMedical GeneticsMetabolic DiseasesMitochondriaMitochondrial DNAMitochondrial DiseasesMitochondrial InheritanceModelingMothersMutationNuclearPathway interactionsPerformancePharmacologic SubstancePhenotypePhysical environmentPopulationQuantitative GeneticsReplacement TherapyResearchSignal PathwaySourcebasedifferential expressionenvironmental stressorexperimental studyfitnessgene expression variationgenetic approachmalemitochondrial DNA mutationmitochondrial dysfunctionmitochondrial genomepreventresponsesextherapy developmenttrait
项目摘要
Mitochondrial dysfunction is a common source of disease, affecting 1 in ~5000 individuals. The
United Mitochondrial Disease Foundation states “every 30 minutes a child is born who will develop a
mitochondrial disease by age 10” (www.umdf.org). The biology of mitochondria makes these problems
tremendously complex. Mitochondrial function requires the coordinated expression of 37 genes
encoded in mitochondrial DNA (mtDNA) inside mitochondria, and over 1000 nuclear-encoded genes
whose products must be transported into mitochondria. The high mutation rate for mtDNA and the large
target of nuclear genes for mutations ensures that every individual has a unique ‘mito-nuclear
genotype’ that can alter fitness. Development in different environments can alter how different
genotypes express adult traits. Thus, these sources of complexity are responsible for key gaps in our
understanding of the genetic bases of mitochondrial disease, and more generally, the genetic variation
for mitochondrial performance in natural populations.
The Drosophila model we have developed provides a powerful genetic approach to dissect this
complexity. We have introduced different mtDNAs into controlled nuclear genetic backgrounds and
identified genetic interactions (‘mitonuclear epistases’) affecting fitness traits and gene expression. We
have discovered that many of the genes with differential expression resulting from mitonuclear genetic
interactions also show differential expression in response environmental perturbations. Our working
hypothesis is that mitochondria integrate genetic pathways regulating changes in both the internal
cellular, and external physical, environments.
We will pursue three general questions. First, what signaling pathways underlie the shared gene
expression responses to altered mitonuclear genotypes and altered physical environments? This will be
addressed with gene expression and epigenetic experiments pairing mitonuclear genotypes and
environmental stressors. Second, which nuclear genes regulate mtDNA effects on phenotypes? This
will be addressed with genetic screens of the nuclear genome across a panel of variable mtDNAs.
Third, do mtDNA mutations affect males more than females? The maternal inheritance of mtDNA
allows direct selection in females but prevents selection in males. Male-specific deleterious mutations
could accumulate in populations, a phenomenon known as Mother’s Curse. This will be addressed
using sex-based phenotypic assays in a panel of mtDNA genotypes that span a range of genetic
divergences. Each of these questions is relevant to current challenges in quantitative and medical
genetics. The findings from this research could be informative regarding genetic questions in the
identification of appropriate donors for mitochondrial replacement therapies.
线粒体功能障碍是疾病的常见来源,影响了约5000人。这
联合线粒体疾病基金会指出:“一个孩子出生的每30分钟就会发展一个
到10英寸时的线粒体疾病(www.umdf.org)。线粒体的生物学使这些问题
非常复杂。线粒体功能需要37个基因的协调表达
在线粒体内部的线粒体DNA(mtDNA)中编码,超过1000个核编码基因
其产品必须运输到线粒体中。 mtDNA和大突变率
核基因的突变靶标可确保每个人都有独特的麦托核
基因型可以改变健身。在不同环境中的开发可以改变不同的
基因型表达成人特征。那就是这些复杂性的来源是我们的关键差距
了解线粒体疾病的遗传基础,更普遍地是遗传变异
用于天然种群中的线粒体性能。
我们开发的果蝇模型提供了一种强大的遗传方法来剖析此事
复杂。我们已经将不同的mtdnas引入了受控的核遗传背景中,
鉴定出影响适应性特征和基因表达的遗传相互作用(“线核Epistases”)。我们
已经发现,许多具有差异表达的基因是由线核遗传引起的
相互作用在响应环境扰动中还显示出差异表达。我们的工作
假设是线粒体整合了调节两者内部变化的遗传途径
蜂窝和外部物理环境。
我们将提出三个一般问题。首先,什么信号通路是共享基因的基础
表达对改变的有线核基因型和改变物理环境的反应?这将是
与基因表达和表观遗传实验有关,将有线粒体基因型和
环境压力源。第二,哪些核基因调节mtDNA对表型的影响?这
将用核基因组的遗传筛选来解决一组可变MTDNA。
第三,mtDNA突变比女性更影响男性? mtDNA的母校遗传
允许在女性中进行直接选择,但可以防止男性选择。男性特异性有害突变
可以在人群中积累,这是一种被称为母亲的诅咒的现象。这将被解决
在跨越一系列通用的mtDNA基因型中使用基于性别的表型测定
分歧。这些问题中的每一个都与定量和医学方面的当前挑战有关
遗传学。这项研究的发现可能有关遗传问题的信息
确定适合线粒体替代疗法的供体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M RAND其他文献
DAVID M RAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M RAND', 18)}}的其他基金
Mitonuclear genetics of complex traits in Drosophila
果蝇复杂性状的线粒体核遗传学
- 批准号:
10594405 - 财政年份:2021
- 资助金额:
$ 38.58万 - 项目类别:
COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
- 批准号:
10461166 - 财政年份:2016
- 资助金额:
$ 38.58万 - 项目类别:
COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
- 批准号:
10271620 - 财政年份:2016
- 资助金额:
$ 38.58万 - 项目类别:
COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
- 批准号:
10681232 - 财政年份:2016
- 资助金额:
$ 38.58万 - 项目类别:
COBRE: Center for Computational Biology of Human Disease
COBRE:人类疾病计算生物学中心
- 批准号:
8813141 - 财政年份:2016
- 资助金额:
$ 38.58万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别: