Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
基本信息
- 批准号:10373096
- 负责人:
- 金额:$ 34.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAffectAffinityAgreementAnimal ModelAreaBindingBinding ProteinsBinding SitesCancer cell lineCell DeathCell LineCellsCentrosomeClinicalClinical TrialsComplexComputer ModelsCrystallizationDataDevelopmentDiseaseElectronsElementsEukaryotic CellExhibitsFamilyFluorescence Resonance Energy TransferGoalsHumanIn VitroInfantLeadLibrariesMYC Family ProteinMYCN geneMagnetic Resonance SpectroscopyMalignant NeoplasmsMalignant neoplasm of liverMeasurementMeasuresMitoticModalityMolecularMolecular ConformationMotionN-Myc ProteinN-terminalNeuroblastomaNeuroendocrine Prostate CancerOncogenesOncogenicOncoproteinsPaperPatientsPhosphorylationPhosphotransferasesPositioning AttributePrognosisProtein KinaseProteinsProto-Oncogene Proteins c-mycPublishingRegulatory ElementResolutionRoentgen RaysSKP Cullin F-Box Protein LigasesSeriesShapesSignal TransductionSolid NeoplasmSpectrum AnalysisStructureTestingTherapeuticTimeUbiquitinationWorkX-Ray Crystallographyaurora kinase Abasec-myc Genescancer cellcancer therapycell growthclinical candidatedrug developmentexperimental studyhigh riskinhibitorinsightkinase inhibitormolecular modelingmulticatalytic endopeptidase complexnanosecondneuroblastoma cellnext generationoverexpressionpreventprostate cancer cell lineresponsescaffoldsensorsmall molecule inhibitorsuccesstherapeutic targettooltranscription factortumor
项目摘要
ABSTRACT
Neuroblastoma is the most common solid tumor in infants. About 25% of patients have high-risk
neuroblastoma, a devastating disease with poor prognosis and few treatment options. The primary driver of
high-risk neuroblastoma is the oncogene MYCN, a MYC-family transcription factor that has no druggable
pockets and has long eluded drug development efforts.
Recently, the protein kinase Aurora A (AurA) was shown to bind to the N-Myc protein in neuroblastoma
cells and interfere with its ubiquitination by the SCF ubiquitin ligase complex, preventing N-Myc from being
degraded by the proteosome. Blocking complex formation between AurA and N-Myc results in rapid N-Myc
degradation and cell death in neuroblastoma cell lines. The same AurA/N-Myc complex has now been shown
to drive neuroendocrine prostate cancer (NEPC), and AurA also forms a similar complex with the closely-
related c-Myc protein in liver cancer. These recent discoveries point to a new paradigm for targeting Myc-
family transcription factors in cancer using inhibitors that trigger structural changes in AurA that block
Myc protein binding and promote Myc degradation.
Our lab has recently shown that most existing AurA inhibitors, including the current clinical candidate
alisertib, do not have a strong enough allosteric effect on AurA to be effective at weakening N-Myc binding. In
agreement with this, alisertib has inconsistent effects on N-Myc levels in cell lines, and has not performed well
in ongoing clinical trials in neuroblastoma and NEPC. The weakness in our current understanding of how AurA
binds to c-Myc and N-Myc and how these interactions are affected by inhibitors represents a major impediment
to this therapeutic strategy for targeting Myc-driven cancers.
The goal of this project is to provide the missing molecular picture of the interactions between
AurA and Myc transcription factors and how they can be modulated by inhibitor binding. We plan to use
new experimental tools and approaches to define how the binding of c-Myc and N-Myc alters the conformation
(shape) and dynamics (protein motion) of AurA, and to delineate the specific structural changes an inhibitor
must trigger to efficiently destabilize these complexes. We will a) define the structure of the AurA/Myc
complexes at atomic resolution using x-ray crystallography, magnetic resonance spectroscopies and molecular
modeling, b) determine how these interactions alter AurA conformation and dynamics by tracking key structural
elements of the kinase in solution, c) correlate the effects of a large panel of kinase inhibitors on AurA
conformation with their ability to alter the binding affinities of N-Myc and c-Myc, and d) test the efficiency of the
strongest AurA allosteric modulators in a series of N-Myc- and c-Myc-dependent cancer cell lines including
neuroblastoma, NEPC and liver cancer cells. The insights will pave the way for the repurposing of existing
kinase inhibitors and the development of new inhibitors as a new treatment modality for Myc-driven cancers.
抽象的
神经母细胞瘤是婴儿最常见的实体瘤。大约25%的患者患有高风险
神经母细胞瘤,一种毁灭性的疾病,预后较差,几乎没有治疗选择。主要驱动程序
高危神经母细胞瘤是癌基因MYCN,它是一种Myc家庭转录因子,没有可吸毒的因素
口袋,长期以来一直避免了药物开发工作。
最近,蛋白激酶Aurora A(Aura)显示与神经母细胞瘤中的N-Myc蛋白结合
细胞并通过SCF泛素连接酶复合物干扰其泛素化,从而防止N-Myc为
被蛋白质体降解。阻断光环和N-MYC之间的复合物形成会导致快速N-MYC
神经母细胞瘤细胞系中的降解和细胞死亡。现在显示了相同的AURA/N-MYC复合体
驱动神经内分泌前列腺癌(NEPC),Aura也形成了与紧密相似的复合物
肝癌中的相关C-MYC蛋白。这些最近的发现指出了针对MYC-的新范式
使用触发AURA结构变化的抑制剂中的癌症家庭转录因子
MYC蛋白结合并促进MYC降解。
我们的实验室最近表明,大多数现有的AURA抑制剂,包括当前的临床候选者
Alisertib,对Aura没有足够强大的变构作用,无法有效地削弱N-MYC结合。在
与此一致,Alisertib对细胞系中N-MYC水平的影响不一致,并且表现不佳
在正在进行的神经母细胞瘤和NEPC的临床试验中。我们目前对光环的理解的弱点
与C-MYC和N-MYC结合以及这些相互作用如何受抑制剂的影响代表了主要障碍
针对以MYC驱动的癌症为目标的治疗策略。
该项目的目的是提供缺少的分子图片
AURA和MYC转录因子以及如何通过抑制剂结合来调节它们。我们计划使用
新的实验工具和方法来定义C-MYC和N-MYC的结合如何改变构象
(形状)和动力学(蛋白质运动),并描绘特定的结构变化抑制剂
必须触发以有效破坏这些复合物的稳定。我们将a)定义光环/MYC的结构
使用X射线晶体学,磁共振光谱和分子,在原子分辨率下的复合物
建模,b)通过跟踪关键结构来确定这些相互作用如何改变AURA构象和动态
溶液中激酶的元素,c)将大型激酶抑制剂对光环的影响相关联
符合其改变N-MYC和C-MYC的结合亲和力的能力,d)测试效率
在一系列N-MYC和C-MYC依赖性癌细胞系中,最强的Aura变构调节剂,包括
神经母细胞瘤,NEPC和肝癌细胞。见解将为现有的重新利用铺平道路
激酶抑制剂和新抑制剂作为MYC驱动的癌症的新治疗方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Mark Levinson其他文献
Nicholas Mark Levinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Mark Levinson', 18)}}的其他基金
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10595089 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10097782 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
- 批准号:
10210065 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
- 批准号:
10593935 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10360449 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
Time-resolved FRET-based allostery sensors for any protein kinase drug target
适用于任何蛋白激酶药物靶标的时间分辨 FRET 变构传感器
- 批准号:
9887709 - 财政年份:2020
- 资助金额:
$ 34.75万 - 项目类别:
Time-resolved FRET-based allostery sensors for any protein kinase drug target
适用于任何蛋白激酶药物靶标的时间分辨 FRET 变构传感器
- 批准号:
10348717 - 财政年份:2020
- 资助金额:
$ 34.75万 - 项目类别:
Decoding the dynamic mechanism of allosteric activation in the cyclin-dependent kinase Cdk2
解读细胞周期蛋白依赖性激酶 Cdk2 变构激活的动态机制
- 批准号:
10321568 - 财政年份:2018
- 资助金额:
$ 34.75万 - 项目类别:
Kinome-Wide Spectroscopic Study of Drug Binding Site Electrostatics
药物结合位点静电的全激酶组光谱研究
- 批准号:
8351780 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
Kinome-Wide Spectroscopic Study of Drug Binding Site Electrostatics
药物结合位点静电的全激酶组光谱研究
- 批准号:
8973668 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:72202154
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
- 批准号:
10750627 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
ImmunoPET Probes for the Imaging of Lyme Disease
用于莱姆病成像的免疫PET探针
- 批准号:
10802275 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别: