Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
基本信息
- 批准号:10593935
- 负责人:
- 金额:$ 34.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAffectAffinityAgreementAnimal ModelAreaBindingBinding ProteinsBinding SitesCancer cell lineCell DeathCell LineCellsCentrosomeClinicalClinical TrialsComplexComputer ModelsDataDevelopmentDiseaseElectronsElementsEukaryotic CellExhibitsFamilyFluorescence Resonance Energy TransferGoalsHumanIn VitroInfantLibrariesMYC Family ProteinMYCN geneMagnetic Resonance SpectroscopyMalignant NeoplasmsMalignant neoplasm of liverMeasurementMeasuresMitoticModalityMolecularMolecular ConformationMotionN-Myc ProteinN-terminalNeuroblastomaNeuroendocrine Prostate CancerOncogenesOncogenicOncoproteinsPaperPatientsPhosphorylationPhosphotransferasesPositioning AttributePrognosisProtein KinaseProteinsProto-Oncogene Proteins c-mycPublishingRegulatory ElementResolutionRoentgen RaysSKP Cullin F-Box Protein LigasesSeriesShapesSignal TransductionSolid NeoplasmSpectrum AnalysisStructureTestingTherapeuticTimeUbiquitinationWorkX-Ray Crystallographyaurora kinase Ac-myc Genescancer cellcancer therapycell growthclinical candidatedrug developmentexperimental studyhigh riskinhibitorinsightkinase inhibitormolecular modelingmulticatalytic endopeptidase complexnanosecondneuroblastoma cellnext generationoverexpressionpreventprogramsprostate cancer cell lineresponsescaffoldsensorsmall molecule inhibitorsuccesstherapeutic targettooltranscription factortumor
项目摘要
ABSTRACT
Neuroblastoma is the most common solid tumor in infants. About 25% of patients have high-risk
neuroblastoma, a devastating disease with poor prognosis and few treatment options. The primary driver of
high-risk neuroblastoma is the oncogene MYCN, a MYC-family transcription factor that has no druggable
pockets and has long eluded drug development efforts.
Recently, the protein kinase Aurora A (AurA) was shown to bind to the N-Myc protein in neuroblastoma
cells and interfere with its ubiquitination by the SCF ubiquitin ligase complex, preventing N-Myc from being
degraded by the proteosome. Blocking complex formation between AurA and N-Myc results in rapid N-Myc
degradation and cell death in neuroblastoma cell lines. The same AurA/N-Myc complex has now been shown
to drive neuroendocrine prostate cancer (NEPC), and AurA also forms a similar complex with the closely-
related c-Myc protein in liver cancer. These recent discoveries point to a new paradigm for targeting Myc-
family transcription factors in cancer using inhibitors that trigger structural changes in AurA that block
Myc protein binding and promote Myc degradation.
Our lab has recently shown that most existing AurA inhibitors, including the current clinical candidate
alisertib, do not have a strong enough allosteric effect on AurA to be effective at weakening N-Myc binding. In
agreement with this, alisertib has inconsistent effects on N-Myc levels in cell lines, and has not performed well
in ongoing clinical trials in neuroblastoma and NEPC. The weakness in our current understanding of how AurA
binds to c-Myc and N-Myc and how these interactions are affected by inhibitors represents a major impediment
to this therapeutic strategy for targeting Myc-driven cancers.
The goal of this project is to provide the missing molecular picture of the interactions between
AurA and Myc transcription factors and how they can be modulated by inhibitor binding. We plan to use
new experimental tools and approaches to define how the binding of c-Myc and N-Myc alters the conformation
(shape) and dynamics (protein motion) of AurA, and to delineate the specific structural changes an inhibitor
must trigger to efficiently destabilize these complexes. We will a) define the structure of the AurA/Myc
complexes at atomic resolution using x-ray crystallography, magnetic resonance spectroscopies and molecular
modeling, b) determine how these interactions alter AurA conformation and dynamics by tracking key structural
elements of the kinase in solution, c) correlate the effects of a large panel of kinase inhibitors on AurA
conformation with their ability to alter the binding affinities of N-Myc and c-Myc, and d) test the efficiency of the
strongest AurA allosteric modulators in a series of N-Myc- and c-Myc-dependent cancer cell lines including
neuroblastoma, NEPC and liver cancer cells. The insights will pave the way for the repurposing of existing
kinase inhibitors and the development of new inhibitors as a new treatment modality for Myc-driven cancers.
抽象的
神经母细胞瘤是婴儿中最常见的实体瘤。约25%的患者属于高危人群
神经母细胞瘤是一种毁灭性的疾病,预后不良,治疗选择很少。主要驱动力
高危神经母细胞瘤是致癌基因 MYCN,这是一种 MYC 家族转录因子,没有可药物治疗的
口袋里,并长期逃避药物开发努力。
最近,蛋白激酶 Aurora A (AurA) 被证明可以与神经母细胞瘤中的 N-Myc 蛋白结合
细胞并通过 SCF 泛素连接酶复合物干扰其泛素化,防止 N-Myc 被
被蛋白酶体降解。阻断 AurA 和 N-Myc 之间的复合物形成可导致 N-Myc 快速生成
神经母细胞瘤细胞系中的降解和细胞死亡。现在已经显示了相同的 AurA/N-Myc 复合物
驱动神经内分泌前列腺癌 (NEPC),AurA 也与密切相关的细胞形成类似的复合物
肝癌中相关的c-Myc蛋白。这些最近的发现指出了针对 Myc 的新范例
癌症中的家族转录因子使用抑制剂触发 AurA 的结构变化,从而阻断
Myc蛋白结合并促进Myc降解。
我们的实验室最近表明,大多数现有的 AurA 抑制剂,包括当前的临床候选药物
alisertib 对 AurA 没有足够强的变构作用,无法有效削弱 N-Myc 结合。在
与此一致的是,alisertib 对细胞系中 N-Myc 水平的影响不一致,并且表现不佳
正在进行的神经母细胞瘤和 NEPC 临床试验。我们目前对 AurA 的理解存在缺陷
与 c-Myc 和 N-Myc 结合,抑制剂如何影响这些相互作用是一个主要障碍
这种针对 Myc 驱动的癌症的治疗策略。
该项目的目标是提供缺失的分子之间相互作用的图像
AurA 和 Myc 转录因子以及如何通过抑制剂结合来调节它们。我们计划使用
新的实验工具和方法来定义 c-Myc 和 N-Myc 的结合如何改变构象
AurA 的(形状)和动力学(蛋白质运动),并描述抑制剂的特定结构变化
必须触发才能有效地破坏这些复合物的稳定性。我们将 a) 定义 AurA/Myc 的结构
使用 X 射线晶体学、磁共振波谱和分子分析技术在原子分辨率下合成配合物
建模,b) 通过跟踪关键结构确定这些相互作用如何改变 AurA 构象和动力学
溶液中激酶的元素,c) 将一大组激酶抑制剂对 AurA 的影响关联起来
构象及其改变 N-Myc 和 c-Myc 结合亲和力的能力,以及 d) 测试
在一系列 N-Myc 和 c-Myc 依赖性癌细胞系中最强的 AurA 变构调节剂,包括
神经母细胞瘤、NEPC 和肝癌细胞。这些见解将为重新利用现有的
激酶抑制剂和新抑制剂的开发作为 Myc 驱动的癌症的新治疗方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Mark Levinson其他文献
Nicholas Mark Levinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Mark Levinson', 18)}}的其他基金
Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
- 批准号:
10373096 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10595089 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10097782 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
Targeting allosteric scaffolding functions of Aurora kinase A in cancer
靶向癌症中极光激酶 A 的变构支架功能
- 批准号:
10210065 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
A transformative drug discovery platform for allosteric kinase inhibitors
变构激酶抑制剂的变革性药物发现平台
- 批准号:
10360449 - 财政年份:2021
- 资助金额:
$ 34.75万 - 项目类别:
Time-resolved FRET-based allostery sensors for any protein kinase drug target
适用于任何蛋白激酶药物靶标的时间分辨 FRET 变构传感器
- 批准号:
9887709 - 财政年份:2020
- 资助金额:
$ 34.75万 - 项目类别:
Time-resolved FRET-based allostery sensors for any protein kinase drug target
适用于任何蛋白激酶药物靶标的时间分辨 FRET 变构传感器
- 批准号:
10348717 - 财政年份:2020
- 资助金额:
$ 34.75万 - 项目类别:
Decoding the dynamic mechanism of allosteric activation in the cyclin-dependent kinase Cdk2
解读细胞周期蛋白依赖性激酶 Cdk2 变构激活的动态机制
- 批准号:
10321568 - 财政年份:2018
- 资助金额:
$ 34.75万 - 项目类别:
Kinome-Wide Spectroscopic Study of Drug Binding Site Electrostatics
药物结合位点静电的全激酶组光谱研究
- 批准号:
8351780 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
Kinome-Wide Spectroscopic Study of Drug Binding Site Electrostatics
药物结合位点静电的全激酶组光谱研究
- 批准号:
8973668 - 财政年份:2012
- 资助金额:
$ 34.75万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 34.75万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
- 批准号:
10750627 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
ImmunoPET Probes for the Imaging of Lyme Disease
用于莱姆病成像的免疫PET探针
- 批准号:
10802275 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 34.75万 - 项目类别: