A 3D multimodal micron-scale human brain atlas bridging single cell data, neuropathology and neuroradiology
连接单细胞数据、神经病理学和神经放射学的 3D 多模态微米级人脑图谱
基本信息
- 批准号:10370064
- 负责人:
- 金额:$ 527.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdultAlgorithmsAmygdaloid structureAnimal ModelArchitectureArchivesAreaAtlasesAutopsyBRAIN initiativeBrainBrain StemBrain imagingBrain regionCallithrixCell physiologyCellsCensusesClinicalCollectionCommunitiesComplementConsentCoupledCryoultramicrotomyDataData AnalysesData SetData StoreDatabasesDepositionExclusion CriteriaFunctional Magnetic Resonance ImagingFutureGenerationsGeometryHippocampus (Brain)HistologicHistologyHumanHypothalamic structureImageInstitutionLaboratoriesLaboratory miceLettersLinkMachine LearningMagnetic Resonance ImagingMeasurementMedicalMedicineMethodologyMethodsMicroscopeMicroscopicModalityMolecular and Cellular BiologyMonkeysMusMyelinNational Institute of Mental HealthNeurosciencesProcessResearch PersonnelResolutionResourcesScanningScientistSeriesSlideSourceStainsStructureTechniquesThalamic structureThickTissue BanksTissue PreservationTissuesTrainingUnited States National Institutes of HealthUrsidae FamilyWitannotation systembasebrain cellbrain tissueclinically significantcrosslinkdata centersdata portaldata repositorydata sharingdigitalepigenomicsexperiencegenome annotationhistological imagehuman dataimage archival systemin vivomachine learning algorithmmachine learning methodmultimodalityneuroimagingneuropathologypetabytereference genomesuccesstooltranscriptometranscriptomicsvirtualwater diffusionwhole slide imaging
项目摘要
Digitized reference brains, also referred to as Common Coordinate Frameworks (CCFs), together
with superposed atlas annotations, are of central importance to neuroscience. They bear the
same relation to neuroscience as do reference genomes and genome annotations to cellular and
molecular biology. Strikingly, however, such reference brains for humans lag far behind the
corresponding CCFs for non-human model organisms such as the laboratory mouse. Existing
data sets either have sections spaced relatively far apart or lack in-plane resolution down to the
micron scale. Crucially, existing data sets are not well connected to the major areas in medicine
that deal with the human brain, namely neuroradiology and neuropathology.
We will meet this need by creating an unprecedented micron-scale, 3D atlas that combines
multiple MRI modalities as well as continuous serial section histology. In particular, the reference
atlas will consist of Nissl, Myelin and H&E stains, with 20 micron contiguous serial sections, and
approximately ~8000 sections/brain. We will do so using the tape-transfer method, which
preserves tissue geometry even in the presence of disconnected pieces to the brain being
sectioned, and permits 3D reassembly of the sections into a 3D volume. We will utilize
diffeomorphic mapping methods to co-register the MRI and histological data, and will create a
human brain CCF in which single-cell transcriptomic and epigenomic data can be pinned in order
to create a Human Brain Cell atlas.
We will use machine learning approaches to segment cells and processes in these images and
to algorithmically detect cytoarchitectonic boundaries; such machine learning methods will also
be used to predict histology and cytoarchitecture from MRI data, with our collected data as a
training set. We will make our data freely available to scientists as well as medical professionals
through an online data portal with a multi-resolution viewer for zooming and panning through
terapixel image data, and also deposit the data in a shared data repository to make it easily
accessible to other researchers. We will connect our data to a unique on-line neuropathology
resource containing over a petabyte of neuropathological images, including H&E stained sections
from the coronal plane. We expect that the reference brain data we produce will become the de-
facto standard for a high-resolution reference atlas for the human brain.
数字化参考大脑,也称为通用坐标框架(CCF)
具有叠加的图谱注释,对神经科学至关重要。他们承担着
与神经科学的关系与参考基因组和基因组注释与细胞和细胞的关系相同
分子生物学。然而,引人注目的是,这种人类参考大脑远远落后于人类大脑。
非人类模型生物(例如实验室小鼠)的相应 CCF。现存的
数据集要么具有间隔相对较远的部分,要么缺乏低至
微米级。至关重要的是,现有的数据集与医学的主要领域没有很好的联系
研究人类大脑的学科,即神经放射学和神经病理学。
我们将通过创建前所未有的微米级 3D 图集来满足这一需求,该图集结合了
多种 MRI 模式以及连续连续切片组织学。特别是,参考
图谱将由 Nissl、Myelin 和 H&E 染色剂组成,具有 20 微米连续连续切片,并且
大约每个大脑约 8000 个切片。我们将使用磁带传输方法来做到这一点,该方法
即使存在与大脑不相连的碎片,也能保留组织的几何形状
切片,并允许将各部分 3D 重新组装成 3D 体积。我们将利用
微分同态映射方法来共同配准 MRI 和组织学数据,并将创建一个
人脑 CCF,其中单细胞转录组和表观基因组数据可以按顺序固定
创建人类脑细胞图谱。
我们将使用机器学习方法来分割这些图像中的细胞和过程,
通过算法检测细胞结构边界;这样的机器学习方法也将
可用于根据 MRI 数据预测组织学和细胞结构,我们收集的数据作为
训练集。我们将向科学家和医疗专业人员免费提供我们的数据
通过具有多分辨率查看器的在线数据门户进行缩放和平移
太像素图像数据,并将数据存储在共享数据存储库中以使其轻松
其他研究人员可以访问。我们将把我们的数据连接到独特的在线神经病理学
包含超过 PB 神经病理学图像的资源,包括 H&E 染色切片
从冠状面。我们期望我们产生的参考大脑数据将成为
人脑高分辨率参考图谱的事实标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PARTHA Pratim MITRA其他文献
PARTHA Pratim MITRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PARTHA Pratim MITRA', 18)}}的其他基金
"Methods from Computational Topology and Geometry for Analysing Neuronal Tree and Graph Data"
“用于分析神经元树和图数据的计算拓扑和几何方法”
- 批准号:
9360109 - 财政年份:2016
- 资助金额:
$ 527.81万 - 项目类别:
BIGDATA: Small DCM: ESCA DA Computational infrastructure for massive neurosci
大数据:小型 DCM:ESCA DA 大规模神经科学计算基础设施
- 批准号:
8599834 - 财政年份:2013
- 资助金额:
$ 527.81万 - 项目类别:
BIGDATA: Small DCM: ESCA DA Computational infrastructure for massive neurosci
大数据:小型 DCM:ESCA DA 大规模神经科学计算基础设施
- 批准号:
8792208 - 财政年份:2013
- 资助金额:
$ 527.81万 - 项目类别:
The Missing Circuit: The First Brainwide Connectivity Map for Mouse
缺失的电路:第一个鼠标全脑连接图
- 批准号:
7764343 - 财政年份:2009
- 资助金额:
$ 527.81万 - 项目类别:
The Missing Circuit: The First Brainwide Connectivity Map for Mouse
缺失的电路:第一个鼠标全脑连接图
- 批准号:
8085811 - 财政年份:2009
- 资助金额:
$ 527.81万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 527.81万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 527.81万 - 项目类别:
AI-empowered 3D Computer Vision and Image-Omics Integration for Digital Kidney Histopathology
AI 赋能的 3D 计算机视觉和图像组学集成用于数字肾脏组织病理学
- 批准号:
10635439 - 财政年份:2023
- 资助金额:
$ 527.81万 - 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 527.81万 - 项目类别: