Uncovering the mechanism and role of a widespread anti-CRISPR-Cas9 protein
揭示广泛存在的抗 CRISPR-Cas9 蛋白的机制和作用
基本信息
- 批准号:10365999
- 负责人:
- 金额:$ 33.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-09 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:BacteriaBacterial GenesBacteriophagesBindingBiochemicalBiogenesisBioinformaticsBiologicalBiological AssayBiologyCRISPR/Cas technologyCellsClustered Regularly Interspaced Short Palindromic RepeatsDataElementsEvolutionFirmicutesGenesGeneticGenetic MarkersGenomeGenomicsGoalsGram-Positive BacteriaGrowthGuide RNAHelix-Turn-Helix MotifsHomologous GeneImmuneImmune systemImmunityLactobacillusLightListeria monocytogenesLysogenyLyticMethodsMicrobeMolecularNucleic Acid BindingNucleic AcidsOperonOrganismPathway interactionsPhysiologicalPhysiologyProphagesProtein FamilyProteinsRNAReagentRegulationRoleSpecificitySumSystemTestingTranscriptVirusVirus DiseasesWorkarms racedesignfitnessgene discoverygenetic regulatory proteingenomic biomarkerguided inquiryimmune functionin vivoinhibitorlytic replicationmicroorganismnovelnovel markernucleasepathogenpreventpromoterresponsetranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Bacteria prevent viral infection by deploying CRISPR-Cas immunity, which features RNA-guided nucleases that
recognize and cleave phage genomes with sequence specificity. Our understanding of the mechanisms and
applications for these systems has advanced dramatically in recent years, however, our appreciation for the
natural physiology of CRISPR-Cas interactions with phages is lacking. This proposal focuses on the discovery,
characterization and evolution of the phage counter-response to CRISPR-Cas immunity. My lab has recently
discovered “anti-CRISPR” proteins produced by Listeria monocytogenes phages that inhibit CRISPR-Cas9
function through distinct mechanisms. While three of the proteins (AcrIIA2-4) interact directly with the Cas9 RNA-
guided nuclease, AcrIIA1 functions in the absence of such an interaction. Moreover, acrIIA1 is the most
widespread anti-CRISPR gene discovered to date, encoded by phages, non-phage mobile elements, and core
genomes across the Firmicutes phylum. Preliminary evidence suggests that this protein represses the
accumulation of Cas9 protein in the cell, suggesting a regulatory role towards biogenesis inhibition. No such
regulatory protein has been previously described. AcrIIA1 possesses a predicted helix-turn-helix domain, which
suggests a mechanism that may involve nucleic acid interactions. Interestingly, phages that infect L.
monocytogenes do not possess just one anti-CRISPR gene, they often encode AcrIIA1, in addition to at least
one of the inhibitor proteins (AcrIIA2-4). The functional importance of this apparent `multi-pronged' CRISPR-
Cas9 attack is unknown. First, we will design isogenic phages to determine the contribution of multiple anti-
CRISPRs to phage fitness, during lytic replication and lysogeny (phage integration). Second, we will determine
whether AcrIIA1 makes direct interactions with any CRISPR-Cas9 promoter elements or RNA transcripts to
interrogate its mechanism of action. Unbiased interaction profiling will also be conducted to fully capture AcrIIA1
biology. Lastly, given how widespread acrIIA1 homologs are, we will conduct comprehensive bioinformatics to
determine the evolutionary origins of this protein superfamily and identify essential residues for function.
Preliminary analyses have revealed an acrIIA1 homolog is found adjacent to a CRISPR-Cas9 operon in
Lactobacillus, suggesting a functional linkage between acrIIA1 and endogenous CRISPR-Cas9 regulation.
Additionally, we will utilize acrIIA1 as an anti-CRISPR marker to facilitate new anti-CRISPR discovery. This will
contribute to our ultimate goal; identifying all CRISPR-Cas systems that are inhibited by phage anti-CRISPR
systems. Additionally, CRISPR-Cas9 inhibitors provide new contributions to the gene editing toolbox, as a
means to enact post-translational inactivation and limit off-target gene editing. Taken together, I propose that
AcrIIA1 is a widespread CRISPR-Cas regulatory protein that bacteria and phage possess. We will determine its
role, mechanism, and diverse reach, which will vastly expand our understanding of CRISPR-Cas biology, phage-
host interactions, and contribute new reagents for CRISPR-Cas applications.
项目概要/摘要
细菌病毒通过部署 CRISPR-Cas 免疫来预防感染,该免疫具有 RNA 引导的核酸酶,
识别和切割具有序列特异性的噬菌体基因组。
近年来,这些系统的应用取得了巨大的进步,但是,我们对
缺乏 CRISPR-Cas 与噬菌体相互作用的自然生理学,该提案的重点是发现,
我的实验室最近研究了噬菌体对 CRISPR-Cas 免疫反应的特征和进化。
发现单核细胞增生李斯特氏菌噬菌体产生的“抗 CRISPR”蛋白可抑制 CRISPR-Cas9
其中三种蛋白质 (AcrIIA2-4) 直接与 Cas9 RNA 相互作用。
引导核酸酶,AcrIIA1 在没有这种相互作用的情况下发挥作用,而且,acrIIA1 是最重要的。
迄今为止发现的广泛的抗 CRISPR 基因,由噬菌体、非噬菌体移动元件和核心编码
整个厚壁菌门的基因组的初步证据表明,这种蛋白质抑制
Cas9 蛋白在细胞中的积累,表明对生物发生抑制具有调节作用。
先前已描述过 AcrIIA1 具有预测的螺旋-转角-螺旋结构域。
表明可能涉及核酸相互作用的机制。
单核细胞增生李斯特菌不仅仅拥有一个抗 CRISPR 基因,它们通常编码 AcrIIA1,此外至少还编码 AcrIIA1
抑制剂蛋白之一 (AcrIIA2-4) 这种明显的“多管齐下”CRISPR-的功能重要性。
Cas9攻击未知。首先,我们将设计同基因噬菌体以确定多重抗的贡献。
在裂解复制和溶原(噬菌体整合)过程中,CRISPR 对噬菌体的适应性。
AcrIIA1 是否与任何 CRISPR-Cas9 启动子元件或 RNA 转录物直接相互作用
还将进行公正的相互作用分析以充分捕获 AcrIIA1。
最后,考虑到 acrIIA1 同源物的广泛分布,我们将进行全面的生物信息学研究。
确定该蛋白质超家族的进化起源并鉴定功能所必需的残基。
初步分析表明,在 CRISPR-Cas9 操纵子附近发现了 acrIIA1 同源物
乳酸菌,表明 acrIIA1 和内源 CRISPR-Cas9 调控之间存在功能联系。
此外,我们将利用 acrIIA1 作为抗 CRISPR 标记,以促进新的抗 CRISPR 发现。
为我们的最终目标做出贡献;识别所有被噬菌体抗 CRISPR 抑制的 CRISPR-Cas 系统
此外,CRISPR-Cas9 抑制剂作为一种基因编辑工具,为基因编辑工具箱做出了新的贡献。
意味着实施翻译后失活和限制脱靶基因编辑。综上所述,我建议。
AcrIIA1 是细菌和噬菌体所拥有的一种广泛存在的 CRISPR-Cas 调节蛋白,我们将确定它。
作用、机制和多样化的影响范围,这将极大地扩展我们对 CRISPR-Cas 生物学、噬菌体的理解
宿主相互作用,并为 CRISPR-Cas 应用提供新试剂。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetic Manipulation of a CAST of Characters in a Microbial Community.
微生物群落中一系列特征的遗传操作。
- DOI:10.1089/crispr.2022.29142.dmo
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mozumdar,Deepto;Csörgő,Bálint;Bondy-Denomy,Joseph
- 通讯作者:Bondy-Denomy,Joseph
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Bondy-Denomy其他文献
Joseph Bondy-Denomy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Bondy-Denomy', 18)}}的其他基金
Investigating the mechanisms that make jumbophages impervious to bacterial immune systems
研究使巨噬细胞不受细菌免疫系统影响的机制
- 批准号:
10503219 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Identifying the mechanism of bacteriophage detection by cyclic-oligonucleotide signaling systems
通过环状寡核苷酸信号系统识别噬菌体检测机制
- 批准号:
10432910 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Identifying the mechanism of bacteriophage detection by cyclic-oligonucleotide signaling systems
通过环状寡核苷酸信号系统识别噬菌体检测机制
- 批准号:
10550270 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Genetic and Proteomic Approaches to Reveal Bacterial Vulnerabilities to Phage Predation
揭示细菌对噬菌体捕食的脆弱性的遗传和蛋白质组学方法
- 批准号:
10625434 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Investigating the mechanisms that make jumbophages impervious to bacterial immune systems
研究使巨噬细胞不受细菌免疫系统影响的机制
- 批准号:
10663359 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Uncovering the mechanism and role of a widespread anti-CRISPR-Cas9 protein
揭示广泛存在的抗 CRISPR-Cas9 蛋白的机制和作用
- 批准号:
9901545 - 财政年份:2018
- 资助金额:
$ 33.92万 - 项目类别:
Discovering New Roles for CRISPR-Cas in Bacterial Pathogenesis
发现 CRISPR-Cas 在细菌发病机制中的新作用
- 批准号:
9349378 - 财政年份:2015
- 资助金额:
$ 33.92万 - 项目类别:
Discovering New Roles for CRISPR-Cas in Bacterial Pathogenesis
发现 CRISPR-Cas 在细菌发病机制中的新作用
- 批准号:
9150686 - 财政年份:2015
- 资助金额:
$ 33.92万 - 项目类别:
相似国自然基金
污泥中抗性细菌和抗性基因的噬菌体微生态控制方法及机制研究
- 批准号:51808468
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
纳帕海高原湿地噬菌体-细菌群落动态及对抗性共进化研究
- 批准号:31860147
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
中国南海微型蓝细菌与蓝细菌噬菌体的遗传多样性与生态位适应性研究
- 批准号:41206131
- 批准年份:2012
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
噬菌体MmP1早期基因的鉴定及其在寄生宿主中作用研究
- 批准号:31170159
- 批准年份:2011
- 资助金额:62.0 万元
- 项目类别:面上项目
噬菌体基因组难测序之谜与细菌免疫机制研究
- 批准号:31070153
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Exploiting Pf phage superinfection to lower Pseudomonas aeruginosa virulence via evolutionary tradeoffs
利用 Pf 噬菌体重复感染通过进化权衡降低铜绿假单胞菌毒力
- 批准号:
10748681 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Quorum-sensing mediated communication between pandemic Vibrio cholerae and phage VP882
群体感应介导大流行霍乱弧菌和噬菌体 VP882 之间的通讯
- 批准号:
10601559 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Using Bacterial Effectors to Uncover Innate Immune Mechanisms Restricting Viral Replication in Bat Cells
利用细菌效应器揭示蝙蝠细胞中限制病毒复制的先天免疫机制
- 批准号:
10592024 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Molecular mechanisms of memory formation and tolerance in CRISPR-Cas systems
CRISPR-Cas系统中记忆形成和耐受的分子机制
- 批准号:
10570544 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Mechanisms and regulation of replication, the cell cycle, gene expression, and horizontal gene transfer in prokaryotes, focusing on Bacillus subtilis
原核生物复制、细胞周期、基因表达和水平基因转移的机制和调控,重点关注枯草芽孢杆菌
- 批准号:
10792219 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别: