Bacterial anti-inflammatory lipid mediators
细菌抗炎脂质介质
基本信息
- 批准号:10350479
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-17 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnti-Bacterial AgentsAnti-Inflammatory AgentsAreaArrestinsAttenuatedBacteriaBacterial InfectionsBifidobacteriumBindingBiochemicalBiochemistryBiological AssayCD1 AntigensCell Culture TechniquesCellsComplementCoupledCryoelectron MicroscopyEncapsulatedEnvironmentEnzymesFatty AcidsFlow CytometryFoundationsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGenetic TranscriptionGoalsHomologous GeneHydration statusImmuneImmune EvasionImmune responseImmune signalingImmunologicsImmunologistImmunologyImmunosuppressionInfectionInflammationInflammatory ResponseInnate Immune ResponseInnate Immune SystemInstructionInterceptIntestinesInvadedInvestigationKnock-outLaboratoriesLeadLifeLigand BindingLipidsLipopolysaccharidesLipoproteinsLuciferasesMammalian CellMeasuresMediatingMediator of activation proteinMembraneMentorsModelingModificationMolecularMolecular ConformationMusOleatesOrganismPathogen detectionPathogenesisPathogenicityPathway interactionsPatternPeroxisome Proliferator-Activated ReceptorsPertussis ToxinPhasePhospholipidsPlayReceptor ActivationReceptor CellReceptor SignalingReporterReportingResearchRoentgen RaysRoleSignal PathwaySignal TransductionSignaling MoleculeSiteSkin TissueSoft Tissue InfectionsStaphylococcus aureusStructureSymbiosisSystemT cell responseT-Cell ActivationT-Cell ReceptorTLR2 geneTechniquesTestingTissuesToll-like receptorsTrainingUnsaturated Fatty AcidsVesicleVirulenceantimicrobial drugbiophysical techniquescareercommensal bacteriacytokinedesigndrug discoveryexperimental studyextracellularextracellular vesiclesgastrointestinalgut inflammationgut microbiomehuman pathogenhydroxy fatty acidimmunoregulationinhibitorinterestlipid mediatorlipid metabolismmultidisciplinarynovelpathogenpathogenic bacteriapi bondprogramsreceptorreceptor bindingrecruitresponsestructural biologyvesicular release
项目摘要
Project Summary
The rapid response of the innate immune system to infections relies on the detection of pathogen-associated
molecular patterns (PAMPs), such as lipopolysaccharides, that activate a robust inflammatory response to
invading organisms. My research program focuses on an unappreciated countermeasure deployed by
commensal bacteria and pathogens that attenuates the immune response to PAMPs. Oleate hydratase (OhyA)
is an enzyme that is expressed in commensal bacteria and the important human pathogen Staphylococcus
aureus. OhyA stereospecifically hydrates the 9-cis double bond of unsaturated fatty acids to produce 10-
hydroxy-fatty acids (hFAs); however, bacteria expressing OhyA do not synthesize unsaturated fatty acids.
OhyA substrates are only encountered at the interface of host tissues, where unsaturated fatty acids are
abundant. I hypothesize that hFAs produced by commensal or pathogenic organisms serve as signaling
molecules that blunt the innate immune response to PAMPs. Indeed, S. aureus ohyA knockouts fail to
establish infections in mice, illustrating the importance of OhyA and hFAs to S. aureus virulence. Thus, hFAs,
which were first discovered in the gut microbiome, may provide an important mechanism for commensal
bacteria to attenuate gastrointestinal inflammation and create tolerant, symbiotic environments. My pilot
experiments and some previous reports provide preliminary evidence for the anti-inflammatory action of hFAs,
but the mechanism(s) of immune suppression by hFAs are unknown. To address this shortcoming, I will
receive formal immunology instruction through coursework and hands-on training in the laboratory of Dr. Paul
Thomas, an expert immunologist, during the K99 phase. We will determine whether hFAs directly antagonize
extracellular PAMP binding to immune cell receptors, bind to CD1 lipid-presenting molecules for T-cell receptor
recognition to antagonize T cell activation, or intercept signaling downstream of PAMP-receptor activation by
stimulating G-protein coupled receptors and/or PAPR. The results of these experiments will uncover the
mechanistic basis for hFA modification of immune cell responses. OhyA has no mammalian homolog, and
validating the importance of OhyA for virulence coupled with the X-ray structures of OhyA will provide the key
information required to determine whether OhyA is a candidate target for antimicrobial drug discovery. During
the R00 phase, I will test the hypothesis that OhyA is packaged into extracellular vesicles released by S.
aureus to interact with surrounding host tissues to form a halo of hFA mediators around the infection site. My
findings will provide an atomistic mechanistic understanding of how OhyA binds to and influences membrane
structure to promote vesicle formation. The K99/R00 research plan is designed to leverage my expertise in
biochemistry and structural biology, while receiving new training in immunology, to advance the understanding
of immune regulation by bacteria and launch a productive and successful career in which I will lead a research
program to elucidate the role bacteria lipid products play in controlling host responses.
项目摘要
先天免疫系统对感染的快速反应依赖于病原体相关的检测
分子模式(小型),例如脂多糖,激活对
入侵生物。我的研究计划着重于由
共生细菌和病原体可减弱对弹药的免疫冲突。 Oleate Hydrotase(OHYA)
是在共生细菌和重要人类病原体葡萄球菌中表达的酶
金黄色葡萄酒。 Ohya立体特定水合不饱和脂肪酸的9-CIS双键产生10-
羟基脂肪酸(HFA);但是,表达OHYA的细菌不合成不饱和脂肪酸。
Ohya底物仅在宿主组织的界面遇到,那里不饱和脂肪酸是
丰富。我假设由共生或致病生物产生的HFA用作信号
钝化了对小型弹药的先天免疫反应的分子。确实,金黄色葡萄球菌Ohya淘汰赛无法
在小鼠中建立感染,说明了Ohya和HFAS对金黄色葡萄球菌病毒的重要性。那,hfas,
这是在肠道微生物组中最初发现的,这可能提供了一个重要机制
细菌减弱胃肠道感染并产生耐受性共生环境。我的飞行员
实验和一些以前的报告为HFA的抗炎作用提供了初步证据,
但是HFA的免疫抑制机制尚不清楚。为了解决这个缺点,我将
保罗博士通过课程和实践培训接受正式的免疫学指导
在K99阶段,托马斯(Thomas),专家免疫学家。我们将确定HFA是否直接拮抗
细胞外性能与免疫细胞受体结合,与CD1脂质呈递分子结合T细胞受体
识别与T细胞激活的拮抗或通过
刺激G蛋白耦合受体和/或PAPR。这些实验的结果将发现
HFA修饰免疫细胞反应的机械基础。 Ohya没有哺乳动物同源物,
验证Ohya对病毒的重要性以及Ohya的X射线结构将提供钥匙
确定OHYA是否是抗菌药物发现的候选靶标的信息。期间
R00阶段,我将检验以下假设,即OHYA被包装成S. S.
金黄色葡萄球菌与周围的宿主组织相互作用,形成感染部位周围HFA介质的光环。我的
调查结果将对Ohya如何与膜结合并影响膜有原子的机械理解
促进囊泡形成的结构。 K99/R00研究计划旨在利用我的专业知识
在接受免疫学培训的同时,生物化学和结构生物学,以促进理解
通过细菌进行免疫调节,并创造了一项富有成效而成功的职业,我将领导一项研究
阐明细菌脂质产品在控制宿主反应中起作用的作用的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher David Radka其他文献
Christopher David Radka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher David Radka', 18)}}的其他基金
相似国自然基金
三种凤尾蕨属植物中吡咯生物碱及其抗菌和抗HCV病毒功能研究
- 批准号:82360689
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于乏氧增强型超声抗菌剂的细菌生物膜感染协同治疗研究
- 批准号:22375101
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非典型I-型聚酮类抗菌剂NFAT-133的芳构化机理
- 批准号:32211530074
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:82202575
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
- 批准号:
10648387 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Defining bioactivities of peptides released from human milk proteins in the preterm infant intestine
定义早产儿肠道中母乳蛋白释放的肽的生物活性
- 批准号:
10658669 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别: