Bacterial anti-inflammatory lipid mediators
细菌抗炎脂质介质
基本信息
- 批准号:10894486
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnti-Inflammatory AgentsAreaArrestinsAttenuatedBacteriaBacterial InfectionsBifidobacteriumBindingBiochemicalBiochemistryBiological AssayCD1 AntigensCell Culture TechniquesCellsComplementCoupledCryoelectron MicroscopyEncapsulatedEnvironmentEnzymesFatty AcidsFlow CytometryFoundationsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGenetic TranscriptionGoalsHomologous GeneHydration statusHydroxylationImmuneImmune EvasionImmune responseImmune signalingImmunologicsImmunologistImmunologyImmunosuppressionInfectionInflammationInflammatory ResponseInnate Immune ResponseInnate Immune SystemInstructionInterceptIntestinesInvadedInvestigationKnock-outLaboratoriesLeadLifeLigand BindingLipidsLipopolysaccharidesLipoproteinsLuciferasesMammalian CellMeasuresMediatingMediatorMembraneMentorsModelingModificationMolecularMolecular ConformationMusOleatesOrganismPathogen detectionPathogenesisPathogenicityPathway interactionsPatternPertussis ToxinPhasePhospholipidsPlayProductivityReceptor ActivationReceptor CellReceptor SignalingReporterReportingResearchRoentgen RaysRoleSignal PathwaySignal TransductionSignaling MoleculeSiteSkin TissueSoft Tissue InfectionsStaphylococcus aureusStructureSymbiosisSystemT cell responseT-Cell ActivationT-Cell ReceptorTLR2 geneTechniquesTestingTissuesToll-like receptorsTrainingUnsaturated Fatty AcidsVesicleVirulenceantimicrobial drugbiophysical techniquescareercommensal bacteriacytokinedesigndrug discoveryexperimental studyextracellularextracellular vesiclesgastrointestinalgut inflammationgut microbiomehuman pathogenhydroxy fatty acidimmunoregulationinhibitorinterestlipid mediatorlipid metabolismmultidisciplinarynovelpathogenpathogenic bacteriapi bondprogramsreceptorrecruitresponsestructural biologyvesicular release
项目摘要
Project Summary
The rapid response of the innate immune system to infections relies on the detection of pathogen-associated
molecular patterns (PAMPs), such as lipopolysaccharides, that activate a robust inflammatory response to
invading organisms. My research program focuses on an unappreciated countermeasure deployed by
commensal bacteria and pathogens that attenuates the immune response to PAMPs. Oleate hydratase (OhyA)
is an enzyme that is expressed in commensal bacteria and the important human pathogen Staphylococcus
aureus. OhyA stereospecifically hydrates the 9-cis double bond of unsaturated fatty acids to produce 10-
hydroxy-fatty acids (hFAs); however, bacteria expressing OhyA do not synthesize unsaturated fatty acids.
OhyA substrates are only encountered at the interface of host tissues, where unsaturated fatty acids are
abundant. I hypothesize that hFAs produced by commensal or pathogenic organisms serve as signaling
molecules that blunt the innate immune response to PAMPs. Indeed, S. aureus ohyA knockouts fail to
establish infections in mice, illustrating the importance of OhyA and hFAs to S. aureus virulence. Thus, hFAs,
which were first discovered in the gut microbiome, may provide an important mechanism for commensal
bacteria to attenuate gastrointestinal inflammation and create tolerant, symbiotic environments. My pilot
experiments and some previous reports provide preliminary evidence for the anti-inflammatory action of hFAs,
but the mechanism(s) of immune suppression by hFAs are unknown. To address this shortcoming, I will
receive formal immunology instruction through coursework and hands-on training in the laboratory of Dr. Paul
Thomas, an expert immunologist, during the K99 phase. We will determine whether hFAs directly antagonize
extracellular PAMP binding to immune cell receptors, bind to CD1 lipid-presenting molecules for T-cell receptor
recognition to antagonize T cell activation, or intercept signaling downstream of PAMP-receptor activation by
stimulating G-protein coupled receptors and/or PAPR. The results of these experiments will uncover the
mechanistic basis for hFA modification of immune cell responses. OhyA has no mammalian homolog, and
validating the importance of OhyA for virulence coupled with the X-ray structures of OhyA will provide the key
information required to determine whether OhyA is a candidate target for antimicrobial drug discovery. During
the R00 phase, I will test the hypothesis that OhyA is packaged into extracellular vesicles released by S.
aureus to interact with surrounding host tissues to form a halo of hFA mediators around the infection site. My
findings will provide an atomistic mechanistic understanding of how OhyA binds to and influences membrane
structure to promote vesicle formation. The K99/R00 research plan is designed to leverage my expertise in
biochemistry and structural biology, while receiving new training in immunology, to advance the understanding
of immune regulation by bacteria and launch a productive and successful career in which I will lead a research
program to elucidate the role bacteria lipid products play in controlling host responses.
项目概要
先天免疫系统对感染的快速反应依赖于病原体相关的检测
分子模式(PAMP),例如脂多糖,可激活强烈的炎症反应
我的研究项目集中于一种未被重视的对策。
共生细菌和病原体会减弱对 PAMP 的免疫反应 (OhyA)。
是一种在共生细菌和重要的人类病原体葡萄球菌中表达的酶
OhyA 立体定向地水合不饱和脂肪酸的 9-顺式双键,产生 10-
羟基脂肪酸(hFA);然而,表达 OhyA 的细菌不合成不饱和脂肪酸。
OhyA 底物仅在宿主组织的界面处遇到,其中不饱和脂肪酸存在
我认为共生生物或病原生物产生的 hFA 可以充当信号传导的作用。
事实上,金黄色葡萄球菌 ohyA 敲除无法抑制对 PAMP 的先天免疫反应。
在小鼠中建立感染,说明 OhyA 和 hFA 对金黄色葡萄球菌毒力的重要性。
首次在肠道微生物组中发现,可能为共生提供重要机制
细菌可以减轻胃肠道炎症并创造耐受的共生环境。
实验和之前的一些报告为 hFA 的抗炎作用提供了初步证据,
但 hFA 的免疫抑制机制尚不清楚,为了解决这个缺点,我将进行研究。
通过保罗博士实验室的课程作业和实践培训接受正式的免疫学指导
Thomas,免疫学家专家,在K99阶段我们将确定hFA是否直接拮抗。
细胞外 PAMP 与免疫细胞受体结合,与 T 细胞受体的 CD1 脂质呈递分子结合
识别以拮抗 T 细胞激活,或拦截 PAMP 受体激活下游的信号传导
刺激 G 蛋白偶联受体和/或 PAPR 这些实验的结果将揭示这一点。
hFA 修饰免疫细胞反应的机制基础没有哺乳动物同源物,并且
结合 OhyA 的 X 射线结构验证 OhyA 对于毒力的重要性将提供关键
确定 OhyA 是否是抗菌药物发现的候选靶标所需的信息。
在 R00 阶段,我将检验 OhyA 被包装到 S 释放的细胞外囊泡中的假设。
金黄色葡萄球菌与周围宿主组织相互作用,在感染部位周围形成 hFA 介体光环。
研究结果将为 OhyA 如何结合并影响膜提供原子机械理解
K99/R00 研究计划旨在利用我在这方面的专业知识。
生物化学和结构生物学,同时接受免疫学方面的新培训,以增进对
细菌的免疫调节,并开启一个富有成效和成功的职业生涯,我将在其中领导一项研究
阐明细菌脂质产物在控制宿主反应中所起的作用的计划。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher David Radka其他文献
Christopher David Radka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher David Radka', 18)}}的其他基金
相似国自然基金
靶向HDAC3/SIAH2蛋白复合物的HDAC3降解剂的作用机制、结构改造及非酶活功能介导的抗炎活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡萨烷选择性调控糖皮质激素受体GR功能的抗炎作用机制与新颖调控剂的设计与发现
- 批准号:82273824
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ZAP-70选择性共价抑制剂及降解剂的设计合成和抗炎活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于片段的P2Y14受体拮抗剂的设计、合成和抗炎活性研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
两种民族药用植物中黄酮类ILCreg诱导剂的发现及其抗炎性肠病机制探究
- 批准号:81960777
- 批准年份:2019
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Impact of Obesity on Chemotherapy-Induced Cytotoxicity: Immune Cells and Skeletal Muscle
肥胖对化疗引起的细胞毒性的影响:免疫细胞和骨骼肌
- 批准号:
10572695 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
- 批准号:
10648387 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
- 批准号:
10686685 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: