Minimally Invasive Ultrasonic Brain-Machine Interface

微创超声脑机接口

基本信息

  • 批准号:
    10294005
  • 负责人:
  • 金额:
    $ 329.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Abstract Brain-machine interfaces (BMIs) are one of the key motivating applications for the BRAIN Initiative’s drive to develop innovative technologies for large-scale recording of neural activity, benefiting not only BMI, but many other neuroscience studies. The most advanced techniques for neural recording and BMIs are currently invasive, causing local damage to living brain tissue, limiting their applications in human neuroscience research and BMI. On the other hand, noninvasive techniques typically offer relatively low spatial resolution and sensitivity. A minimally invasive BMI would bridge the gap between these extremes, opening a new avenue for neuroscience research and neuroprosthetics. Recently, functional ultrasound (fUS) imaging was introduced as a breakthrough technology for large-scale recording of neural activity – providing highly sensitive imaging of activity-dependent changes in blood flow with a spatiotemporal resolution of ~100 µm and 100 ms at several-cm depth. Importantly, fUS can record from outside the brain and protective dura mater tissue, vastly expanding its potential use in neuroscience applications and BMIs alike. While fUS is a hemodynamic technique, its excellent spatiotemporal performance and single-trial sensitivity offer a substantially closer connection to the underlying neuronal signals than achievable with other hemodynamic methods such as fMRI. In this project, we will push the boundaries of fUS as a technology for large-scale recording of neural activity by developing a fUS-based minimally invasive BMI. This proposal is based on preliminary data acquired by the collaborating investigators showing that ultrafast fUS imaging of the posterior parietal cortex in non-human primates (NHP) provides sufficient information to predict planned movements from single trial fUS recordings. These remarkable findings suggest that it may be possible to use fUS as the basis for a minimally invasive BMI that is implanted in the skull and does not penetrate the dura or brain tissue. Turning this potential into reality requires several fundamental advances in fUS neural imaging technology, which will greatly enhance the utility of this large-scale neural imaging technique across neuroscience applications. These advances include (1) maximizing the speed, data processing and information content extracted from fUS to enable a high- performance, real-time acute BMI; (2) developing a surgically implantable fUS technology for chronic, longitudinal minimally invasive recording of neural activity from a specific brain region; and (3) extending the fUS technology from 2D to 3D to facilitate applications requiring real-time imaging of large brain volumes. This proposal is enabled by two key innovations made by the co-PIs: the invention of fUS by Tanter, and the discovery by the collaborative team of Andersen, Shapiro and Tanter that fUS signals contain information that can be used for BMI. In addition, several new innovations are introduced through the proposed work including techniques to acquire and process fUS data in real time, advances in fUS hardware and surgical techniques for chronic implantation, and advances to enable wide-field and sparse real-time 3D imaging. If successful, this project will significantly advance the capabilities of fUS as a widely useful technology for rapid, sensitive, large-scale neural imaging and enable minimally invasive BMI.
抽象的 脑机接口 (BMI) 是 BRAIN Initiative 推动开发的关键应用之一 用于大规模记录神经活动的创新技术,不仅有利于 BMI,还有许多其他神经科学 目前最先进的神经记录和脑机接口技术是侵入性的,会对生命造成局部损害。 另一方面,限制了其在人类神经科学研究和BMI中的应用。 通常提供相对较低的空间分辨率和灵敏度,微创 BMI 可以弥补两者之间的差距。 这些极端现象为神经科学研究和神经修复术开辟了新途径。最近,功能性超声(fUS)出现了。 成像作为大规模高度记录神经活动的突破性技术被引入——提供 对活动相关的血流变化进行灵敏成像,时空分辨率约为 100 µm 和 100 ms 重要的是,fUS 可以从大脑和保护性硬脑膜组织外部进行记录,从而极大地扩展其范围。 在神经科学应用和 BMI 等方面的潜在用途虽然 fUS 是一种血流动力学技术,但其性能非常出色。 时空性能和单次试验敏感性提供了与潜在神经元的更紧密的联系 信号比其他血液动力学方法(例如功能磁共振成像)所能实现的信号要高。 在这个项目中,我们将通过开发 fUS 作为大规模记录神经活动的技术来突破界限 基于 fUS 的微创 BMI 该提案基于合作研究人员获得的初步数据。 表明非人类灵长类动物 (NHP) 后顶叶皮质的超快 fUS 成像提供了足够的 从单次试验 fUS 记录中预测计划运动的信息这些显着的发现表明它可能。 可以使用 fUS 作为植入颅骨且不穿透颅骨的微创 BMI 的基础 硬脑膜或脑组织。 将这一潜力变为现实需要 fUS 神经成像技术的几项根本性进步,这将 极大地增强了这种大规模神经成像技术在神经科学应用中的实用性。 包括 (1) 最大化从 fUS 中提取的速度、数据处理和信息内容,以实现高 性能、实时急性 BMI;(2) 开发用于慢性、纵向的手术植入式 fUS 技术 对特定大脑区域的神经活动进行微创记录;(3) 将 fUS 技术从 2D 扩展到 3D 技术以促进需要对大脑体积进行实时成像的应用,该提案是通过两个关键因素实现的。 共同PI的创新:Tanter发明的fUS,以及Andersen协作团队的发现, Shapiro 和 Tanter 认为 fUS 信号包含可用于 BMI 的信息。此外,还有几项新的创新。 通过拟议的工作介绍,包括实时获取和处理 fUS 数据的技术、fUS 的进展 用于慢性植入的硬件和手术技术,以及实现宽视场和稀疏实时 3D 的进步 如果成功,该项目将显着提高 fUS 的能力,使其成为一种广泛使用的快速、快速成像技术。 敏感的大规模神经成像并实现微创 BMI。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decoding motor plans using a closed-loop ultrasonic brain-machine interface.
  • DOI:
    10.1038/s41593-023-01500-7
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Griggs, Whitney S.;Norman, Sumner L.;Deffieux, Thomas;Segura, Florian;Osmanski, Bruno-Felix;Chau, Geeling;Christopoulos, Vasileios;Liu, Charles;Tanter, Mickael;Shapiro, Mikhail G.;Andersen, Richard A.
  • 通讯作者:
    Andersen, Richard A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD A ANDERSEN其他文献

RICHARD A ANDERSEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD A ANDERSEN', 18)}}的其他基金

Sensory motor transformations in human cortex
人类皮层的感觉运动转换
  • 批准号:
    10461165
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Visuomotor Prosthetic for Paralysis
瘫痪视觉运动假肢
  • 批准号:
    10630073
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Visuomotor Prosthetic for Paralysis
瘫痪视觉运动假肢
  • 批准号:
    10399978
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Sensory motor transformations in human cortex
人类皮层的感觉运动转换
  • 批准号:
    10289879
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Visuomotor Prosthetic for Paralysis
瘫痪视觉运动假肢
  • 批准号:
    10090436
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Dexterous BMIs for tetraplegic humans utilizing somatosensory cortex stimulation
利用体感皮层刺激为四肢瘫痪的人提供灵巧的 BMI
  • 批准号:
    9357398
  • 财政年份:
    2016
  • 资助金额:
    $ 329.08万
  • 项目类别:
Dexterous BMIs for tetraplegic humans utilizing somatosensory cortex stimulation
利用体感皮层刺激为四肢瘫痪的人提供灵巧BMI
  • 批准号:
    9205978
  • 财政年份:
    2016
  • 资助金额:
    $ 329.08万
  • 项目类别:
PROCESSING BASIC SOCIAL REWARDS
处理基本社会奖励
  • 批准号:
    8483047
  • 财政年份:
    2012
  • 资助金额:
    $ 329.08万
  • 项目类别:
Cognitive neural prosthetics for clinical applications
临床应用的认知神经修复术
  • 批准号:
    8324695
  • 财政年份:
    2005
  • 资助金额:
    $ 329.08万
  • 项目类别:
Smart MEMS recording systems for visual cortical studies
用于视觉皮层研究的智能 MEMS 记录系统
  • 批准号:
    7345357
  • 财政年份:
    2005
  • 资助金额:
    $ 329.08万
  • 项目类别:

相似海外基金

Acquisition of Colaborative Robot System for Ultrasound Research
采购用于超声研究的协作机器人系统
  • 批准号:
    10798904
  • 财政年份:
    2022
  • 资助金额:
    $ 329.08万
  • 项目类别:
Hemodynamic basis for secondary cervical grey matter tissue loss after spinal cord injury
脊髓损伤后继发性颈灰质组织丢失的血流动力学基础
  • 批准号:
    10599354
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Real-time three-dimensional spinal navigation system for bedside lumbar puncture placement
床边腰椎穿刺置入实时三维脊柱导航系统
  • 批准号:
    10483220
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Real-time three-dimensional spinal navigation system for bedside lumbar puncture placement
床边腰椎穿刺置入实时三维脊柱导航系统
  • 批准号:
    10689113
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
Hemodynamic basis for secondary cervical grey matter tissue loss after spinal cord injury
脊髓损伤后继发性颈灰质组织丢失的血流动力学基础
  • 批准号:
    10403616
  • 财政年份:
    2021
  • 资助金额:
    $ 329.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了