Assessing the impact of COVID-19 interventions on human mobility and SARS-CoV-2 transmission dynamics in the United States
评估 COVID-19 干预措施对美国人口流动和 SARS-CoV-2 传播动态的影响
基本信息
- 批准号:10288079
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-18 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAccountingAddressAffectAgreementBehaviorBehavioralBusinessesCOVID-19COVID-19 interventionCOVID-19 pandemicCategoriesCellular PhoneCessation of lifeCharacteristicsChinaCitiesComplexCountryCountyDataData AnalysesDatabasesDemographic FactorsDemographyDiagnostic testsDiseaseDisease OutbreaksEconomicsEducationEffectivenessEmploymentEpidemicEpidemiologyEquilibriumFutureGeographic LocationsGeographyGovernmentHospitalizationHumanIncidenceIncomeIndividualInfectionInfluenzaInterventionLiftingLinkLocal GovernmentLocationMeasuresModelingMovementOccupationsPatternPerformancePharmacologic SubstancePoliciesPolicy MakerPopulationPopulation DensityProviderRecoveryReportingResolutionRestaurantsSARS-CoV-2 infectionSARS-CoV-2 transmissionSchoolsSeriesSerodiagnosesShelter facilitySocial DistanceSocial ImpactsSocioeconomic FactorsSourceState GovernmentStatistical MethodsStatistical ModelsTestingTimeUnited StatesUpdateVaccinesbasecomorbiditydata sharingdemographicsdisease transmissioneconomic impactepidemiologic datainterestmortalitypandemic diseaseresponsesimulationsocial mediaspatiotemporaltransmission processweb site
项目摘要
Project Summary
The rapid spread of SARS-CoV-2 led countries across the globe to implement strong social distancing and
lockdown measures to reduce transmission. The first peak of newly reported COVID-19 cases and deaths in
the United States occurred in April 2020, but the number of positive tests began increasing again in June as
many states started easing their initial shelter-in-place orders despite ongoing transmission. In the absence of
widespread deployment of an effective vaccine or another pharmaceutical intervention, state and local
governments will have to rely on a range of non-pharmaceutical interventions (NPIs) to limit further outbreaks
over the next 12-24 months. To provide policy makers with actionable information regarding the efficacy of
different NPIs under a range of realistic epidemiological contexts, we will examine the impact of different NPIs
on both mobility patterns and disease transmission using a geographically realistic, agent-based model. First,
we will assemble a comprehensive database of local, county, and state policies related to COVID-19 from
public websites and social media and categorize these policies by intervention type. We will also obtain
epidemiological data from several different publicly available databases and use county-level case, testing,
hospitalization, and mortality data to assess the impact of different county and state policies and NPIs in real-
time.
We will assess the link between NPIs and SARS-CoV-2 dynamics using cell phone-derived mobility data from
a combination of publicly available sources and data sharing agreements with several data providers. First, we
will use statistical models to assess the impact of different categories of county and state COVID-19 policies
and NPIs on epidemiologically-relevant human mobility and activity patterns, including activity data at different
places-of-interest subject to particular COVID-19 related restrictions. These mobility metrics will then be used
to inform changes in local contact patterns in our agent-based transmission model. This transmission model
will also incorporate detailed information on the demographics, socioeconomic factors, co-morbidities, and
occupations that have been shown to be important for SARS-CoV-2 epidemiology. Local populations will be
linked using regional connectivity metrics derived from cell phone data. Incorporation of these details will allow
us to estimate the impact of different policies on transmission dynamics in a range of settings while accounting
for local conditions as well as regional dynamics. Model estimates will be iteratively updated on a weekly basis
over the course of the project to provide short-term forecasts of infections, hospitalizations, and deaths based
on the current mix of NPIs across the country. These forecasts will be used to validate our NPI-impact
estimates by comparing forecasts to future observations.
项目概要
SARS-CoV-2 的迅速传播导致全球各国实施了强有力的社会隔离和
采取封锁措施减少传播。新报告的 COVID-19 病例和死亡人数首次出现高峰
美国发生在2020年4月,但阳性检测数量在6月份再次开始增加
尽管病毒仍在传播,许多州仍开始放松最初的就地避难令。在没有
州和地方广泛部署有效的疫苗或其他药物干预措施
各国政府将不得不依靠一系列非药物干预措施(NPI)来限制疫情进一步爆发
在接下来的 12-24 个月内。为政策制定者提供有关有效性的可操作信息
在一系列现实流行病学背景下的不同 NPI,我们将研究不同 NPI 的影响
使用地理上真实的、基于代理的模型来研究流动模式和疾病传播。第一的,
我们将收集与 COVID-19 相关的地方、县和州政策的综合数据库
公共网站和社交媒体,并按干预类型对这些政策进行分类。我们还将获得
流行病学数据来自几个不同的公开数据库,并使用县级病例、测试、
住院率和死亡率数据,以评估不同县和州政策以及 NPI 的实际影响
时间。
我们将使用来自手机的移动数据来评估 NPI 和 SARS-CoV-2 动态之间的联系
公开来源以及与多个数据提供商的数据共享协议的组合。首先,我们
将使用统计模型来评估不同类别的县和州 COVID-19 政策的影响
和流行病学相关的人员流动和活动模式的 NPI,包括不同地区的活动数据
受特定新冠肺炎 (COVID-19) 相关限制的名胜古迹。然后将使用这些移动性指标
通知我们基于代理的传播模型中本地联系模式的变化。此传动模型
还将纳入有关人口统计、社会经济因素、合并症和
已被证明对 SARS-CoV-2 流行病学很重要的职业。当地居民将
使用源自手机数据的区域连接指标进行链接。纳入这些细节将允许
我们在核算时估计不同政策对一系列环境下传播动态的影响
因地制宜以及区域动态。模型估计将每周迭代更新
在项目过程中提供感染、住院和死亡的短期预测
关于目前全国非营利机构的结构。这些预测将用于验证我们的 NPI 影响
通过将预测与未来观察进行比较来进行估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Michael Moore其他文献
Sean Michael Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Michael Moore', 18)}}的其他基金
Assessing the impact of COVID-19 interventions on human mobility and SARS-CoV-2 transmission dynamics in the United States
评估 COVID-19 干预措施对美国人口流动和 SARS-CoV-2 传播动态的影响
- 批准号:
10434915 - 财政年份:2021
- 资助金额:
$ 23.48万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Using wastewater surveillance data to study SARS-CoV-2 dynamics and predict COVID-19 outcomes
利用废水监测数据研究 SARS-CoV-2 动态并预测 COVID-19 结果
- 批准号:
10645617 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Mitoquinone/mitoquinol mesylate as oral and safe Postexposure Prophylaxis for Covid-19
米托醌/甲磺酸米托喹诺作为 Covid-19 的口服且安全的暴露后预防
- 批准号:
10727092 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Examining linkages between disrupted care and chronic disease outcomes during the COVID-19 pandemic: a VAMC level spatio-temporal analysis
检查 COVID-19 大流行期间中断的护理与慢性病结果之间的联系:VAMC 级别时空分析
- 批准号:
10641136 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别: