Establishing efficient technologies for ovarian cancer organoid derivation from fresh tumor resections
建立从新鲜肿瘤切除物中衍生卵巢癌类器官的有效技术
基本信息
- 批准号:10218117
- 负责人:
- 金额:$ 19.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAdoptionAffectAntineoplastic AgentsAutomationBasic ScienceBiological AssayBiological ModelsCancer EtiologyCancer PatientCell Culture TechniquesCell LineCellsCessation of lifeClinicalClinical ResearchColorectal CancerCommunitiesCryopreservationDependenceDerivation procedureDevelopmentDiseaseDropsDrug resistanceEnsureEvolutionExcisionExhibitsExperimental ModelsFormulationFrequenciesFutureGenerationsGeneticGenetic TranscriptionGenomicsGenotypeGoalsGrowthGrowth FactorHeterogeneityHistologicHistologyIn VitroLaboratory ResearchLiquid substanceMaintenanceMalignant NeoplasmsMalignant neoplasm of ovaryMemorial Sloan-Kettering Cancer CenterMethodsModelingMolecularMutationNeoplasm MetastasisOperative Surgical ProceduresOrganoidsOvarian CarcinomaPatientsPharmaceutical PreparationsPharmacologyPhenotypePopulationPre-Clinical ModelProcessProtocols documentationResearchRoboticsSamplingStandardizationStem Cell DevelopmentSurvival RateSuspensionsTechnologyTestingTherapeuticTimeLineTissuesTranslatingTreatment EfficacyTreatment outcomeTumor-DerivedWomanWorkadult stem cellanticancer researchbasebiobankcancer cellcancer typechemotherapeutic agentchemotherapyclinical subtypesclinically relevantdesigndrug sensitivityexperimental studygenetic informationhigh throughput screeninghigh-throughput drug screeningimprovedin vivoinduced pluripotent stem cellinhibitor/antagonistmalignant breast neoplasmmatrigelneoplastic cellovarian neoplasmpancreatic cancer patientspatient responsepersonalized medicinepreservationrelapse patientsresponsestandard of carestem cellssuccesstissue culturetumortumor heterogeneity
项目摘要
PROJECT SUMMARY
Ovarian cancer is among the deadliest cancer types, with a 5-year survival rate of only 47%. Survival rates for
women with ovarian cancer have not changed in the past 25 years. This is partly due to the high frequency of
patient relapses (over 75%) with cancers exhibiting drug resistance, making these cancers extremely difficult
to treat effectively. Exacerbating the issue is that ovarian carcinomas are especially heterogeneous with
respect to the cell of origin, genetics, and clinical evolution. These are major impediments to establishing
effective experimental models for laboratory research, which are critical to improve the understanding and
treatment of each patient's disease. Recent technological advances have enabled the development of
`organoids' – 3D self-organized tissue cultures – from adult stem cells and subsequently from tumor samples.
Tumor-derived organoids are arranged in a way that mimics the original tumor organization. Tumor-derived
organoids that can be cultured long-term offer the advantage of extending the experimental lifetime of
tumor resection samples, which are currently a limiting step in cancer research. Recent studies have
shown that these organoids faithfully recapitulate the genetics, histology, and drug responses of original
tumor samples from breast, colorectal, and pancreatic cancer patients, paving the way for `living biobanks' of
these cancer types. Ovarian cancer organoids have been more challenging to establish, partly because of
their heterogeneity and unique growth requirements – but preliminary successes have now made it feasible to
develop technology for ovarian cancer organoid derivation from fresh tumor samples. This project aims to
build on these recent advances in the development of stem cell culture and stem-cell-based organoids
to establish platform technology for ovarian cancer organoid generation. Numerous media conditions
will be tested, which in a proof of concept will incorporate tumor genetic information to define specific growth
requirements. The organoid models generated will be validated to ensure concordance with the original tumor
genetics and histology, modifying the protocols accordingly. This project presents a unique opportunity to
investigate whether organoid drug sensitivities correspond to patient treatment outcomes, as patients will be
treated with standard-of-care chemotherapies following surgery to take the tumor samples, and organoids
will be tested with the same agents. Finally, the protocols generated will be adapted for robotic automation so
that numerous samples can be processed and biobanked in parallel at large scale, facilitating future adoption
of these methods in a clinical setting. Taken together, this project will establish a new patient-specific
preclinical model system to accelerate basic and clinical ovarian cancer research, ranging from
disease mechanisms to personalized medicine approaches that will help to prioritize the treatments
most likely to be effective for each patient.
项目概要
卵巢癌是最致命的癌症类型之一,5 年生存率仅为 47%。
女性患卵巢癌的比例在过去 25 年里没有变化,部分原因是卵巢癌的高发病率。
患者复发(超过 75%)且癌症表现出耐药性,使这些癌症变得极其困难
更严重的是,卵巢癌具有异质性。
关于细胞起源、遗传学和临床进化,这些是建立的主要障碍。
实验室研究的有效实验模型,对于提高理解和理解至关重要
最近的技术进步使得治疗每个患者的疾病成为可能。
“类器官”——3D 自组织组织培养物——来自成体干细胞,随后来自肿瘤样本。
肿瘤来源的类器官以模仿原始肿瘤组织的方式排列。
可以长期培养的类器官具有延长实验寿命的优点
肿瘤切除样本,这是目前癌症研究的一个限制步骤。
研究表明,这些类器官忠实地再现了原始细胞的遗传学、组织学和药物反应
来自乳腺癌、结直肠癌和胰腺癌患者的肿瘤样本,为“活生物库”铺平了道路
这些癌症类型的建立更具挑战性,部分原因是
它们的异质性和独特的增长要求——但初步的成功现在已经使
开发从新鲜肿瘤样本中提取卵巢癌类器官的技术。
以干细胞培养和基于干细胞的类器官开发的最新进展为基础
建立卵巢癌类器官生成的平台技术多种介质条件。
将进行测试,在概念验证中将结合肿瘤遗传信息来定义特定的生长
生成的类器官模型将经过验证,以确保与原始肿瘤的一致性。
遗传学和组织学,相应地修改协议,该项目提供了一个独特的机会。
研究类器官药物敏感性是否与患者的治疗结果相对应,因为患者将
手术后接受标准护理化疗以采集肿瘤样本和类器官
最后,生成的协议将适用于机器人自动化。
可以大规模并行处理和生物样本库中的大量样本,从而促进未来的采用
综上所述,该项目将在临床环境中建立一种新的针对患者的方法。
临床前模型系统可加速卵巢癌的基础和临床研究,范围包括
疾病机制到个性化医疗方法将有助于确定治疗的优先顺序
最有可能对每个患者有效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Andres-Martin其他文献
Laura Andres-Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Andres-Martin', 18)}}的其他基金
Establishing efficient technologies for ovarian cancer organoid derivation from fresh tumor resections
建立从新鲜肿瘤切除物中衍生卵巢癌类器官的有效技术
- 批准号:
9795857 - 财政年份:2019
- 资助金额:
$ 19.58万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Developing a Quantitative Assessment Tool for Characterizing Social Domains
开发用于表征社会领域的定量评估工具
- 批准号:
10586621 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Clearbot: a system for fully automated, high-throughput tissue clearing and immunostaining
Clearbot:全自动、高通量组织透明化和免疫染色系统
- 批准号:
10382515 - 财政年份:2022
- 资助金额:
$ 19.58万 - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
$ 19.58万 - 项目类别:
Automated three-dimensional spinal navigation system for chronic pain therapy
用于慢性疼痛治疗的自动化三维脊柱导航系统
- 批准号:
10384241 - 财政年份:2021
- 资助金额:
$ 19.58万 - 项目类别: