Quantitative, Image-Based Osteoarthritis Biomarkers Software Resubmission

基于图像的定量骨关节炎生物标志物软件重新提交

基本信息

  • 批准号:
    10207857
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Musculoskeletal diseases are common in the United States, especially among the elderly and individuals of low socioeconomic status, and they take a large toll on the Nation's overall health status. Bone disorders are diagnosed by exploring a patient's medical history and by physical exam, alongside laboratory tests, bone biopsies, and imaging tests. Bone imaging tests provide a non-invasive way to examine at bone structure. However, imaging data is often evaluated qualitatively or with operator dependence as opposed to automated or quantitative measurements. These quantitative measurements are not sensitive enough to detect subtle variations in bone quality associated with early disease progression. We propose the development of high performance, multimodal, and automated 3D bone characterization tools, which are accessible through a web browser. A broad range of researchers and clinicians can leverage these tools to obtain high-throughput, reproducible biomarkers for statistically sensitive research studies. The system will automatically segment bone and cartilage and quantify biomarkers from the regions of interest. The proposed system will have superior high-throughput capabilities over existing bone image analysis suites, and it will provide access to state-of-the-art algorithms for researchers without programming abilities. In addition to providing a powerful resource to the research community, we will commercialize this complete, streamlined analytical solution by offering it as an online fee-per-image processing service. Our system will be validated by demonstrating that we can detect skeletal deterioration in preclinical studies, which can potentially lead to new clinical trials for novel therapeutic and diagnostic approaches in humans. We will test the hypothesis that the system can automatically identify osteoarthritis in knee images from the Osteoarthritis Initiative database and differentiate hemophilia in micro-computed tomography images. The ultimate goal of the proposed project is to lead to better preventive strategies and improved progression monitoring of osteoarthritis and related diseases.
项目摘要 肌肉骨骼疾病在美国很常见,尤其是在老年人和个人中 社会经济地位低下,他们对美国的整体健康状况造成了巨大损失。骨骼障碍是 通过探索患者的病史和身体检查,以及实验室检查,骨骼诊断 活检和成像测试。骨成像测试提供了一种非侵入性检查骨结构的方法。然而, 成像数据通常是定性评估的,或与操作员依赖性相比,而不是自动化或定量的 测量。这些定量测量不足以检测骨骼的细微变化 与早期疾病进展相关的质量。我们提出了高性能,多模式的发展 和自动化的3D骨特征工具,可以通过Web浏览器访问。广泛的范围 研究人员和临床医生可以利用这些工具来获得高通量,可再现的生物标志物的 统计敏感的研究。该系统将自动分割骨头和软骨并进行量化 来自感兴趣地区的生物标志物。拟议的系统将具有出色的高通量功能 在现有的骨骼图像分析套件上,它将为研究人员提供最先进的算法 没有编程能力。除了为研究社区提供强大的资源外,我们还将 通过将其作为每图像处理的在线收费处理,将该完整的简化分析解决方案商业化 服务。我们的系统将通过证明我们可以在临床前检测骨骼恶化来验证 研究可能会导致新的治疗和诊断方法的新临床试验 人类。我们将测试系统可以自动识别膝盖图像中骨关节炎的假设 从骨关节炎的倡议数据库中,在微型计算层析成像图像中区分了血友病。 拟议项目的最终目标是提出更好的预防策略并改善进展 监测骨关节炎和相关疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew McCormick其他文献

Matthew McCormick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew McCormick', 18)}}的其他基金

A Computational Framework for Distributed Registration of Massive Neuroscience Images
海量神经科学图像分布式配准的计算框架
  • 批准号:
    10259930
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
Quantitative, Image-Based Osteoarthritis Biomarkers Software Resubmission
基于图像的定量骨关节炎生物标志物软件重新提交
  • 批准号:
    10250562
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
Prostate Cancer Assessment Via Integrated 3D ARFI Elasticity Imaging and Multi-Parametric MRI
通过集成 3D ARFI 弹性成像和多参数 MRI 进行前列腺癌评估
  • 批准号:
    8905274
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:

相似国自然基金

采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
  • 批准号:
    32301322
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
  • 批准号:
    42377321
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
  • 批准号:
    72371117
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10367144
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10610317
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Map Manager: Longitudinal image analysis with online editing and sharing.
地图管理器:纵向图像分析,在线编辑和共享。
  • 批准号:
    10365810
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
  • 批准号:
    9927886
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
  • 批准号:
    10190871
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了