Map Manager: Longitudinal image analysis with online editing and sharing.
地图管理器:纵向图像分析,在线编辑和共享。
基本信息
- 批准号:10365810
- 负责人:
- 金额:$ 115.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D ImagingAdoptionAlgorithmic SoftwareAstronomyAttentionAxonBRAIN initiativeBackBrain imagingCOVID-19 pandemicCellsClientCollaborationsCommunitiesComputer softwareCoupledDataData AnalysesData SetDendritesDendritic SpinesDevelopmentDisciplineDocumentationEcosystemEncapsulatedEnsureEnvironmentEventEvolutionFAIR principlesFeedbackFosteringFoundationsFunctional ImagingFundingGoalsImageImage AnalysisIndividualInternetIntuitionKineticsLibrariesLightLinkMachine LearningMapsMetadataMicroscopeModelingModernizationMorphologyNeuronsNeurosciencesNeurosciences ResearchNomenclatureOnline SystemsParentsPhysiologicalProteinsPublishingPythonsRecipeReporterReproducibilityResearch MethodologyResearch PersonnelRunningScheduleScientific InquirySeedsSeriesSite VisitSoftware DesignSoftware ToolsStructureSystemThree-Dimensional ImageThree-Dimensional ImagingTimeVertebral columnVisualVisualizationVocabularyWorkanalysis pipelineautomated algorithmbasecatalystcell typecloud baseddata miningdata modelingdata sharingdensitydesignfile formatflexibilitygraphical user interfacehigh resolution imagingimage archival systeminterestinteroperabilitylarge datasetslongitudinal analysislongitudinal designmodel buildingonline repositoryprogramsserial imagingsoftware developmenttooltwo-photonusabilityvirtualweb interface
项目摘要
The increasing availability and ease of use of confocal, two-photon, and light-sheet microscopes coupled with
rapid developments in fluorescent protein reporters have made 3D and functional imaging and its analysis a
central component of modern Neuroscience research. Yet, the ease of acquiring 3D and functional images is
creating progressively larger datasets, prompting the need for high-throughput image analysis algorithms and
software that can be both rapid and accurate. Although software to analyze single time-point images has received
substantial attention, tools to analyze multiple time-point longitudinal imaging datasets is currently lacking. This
lack of longitudinal image analysis tools is a major barrier to scientific inquiry with individual labs devising their
own analysis strategies creating a situation where it is difficult for others to verify and reproduce this analysis.
What is needed is a community agreed upon longitudinal image analysis standard that promotes sharing.
Here, we propose to develop software to create and curate annotations in longitudinal imaging datasets.
This software will solve a major problem by providing the needed rigor and reproducibility while making it easy
for researchers to distribute their data and analysis. Making these important datasets findable, accessible,
interoperable, and reusable. To achieve these goals, we propose to build intuitive web-browser and desktop
graphical-user-interfaces (GUIs) that will work with cloud based data and analysis. These GUIs will be driven
by a Python advanced-programming-interface (API) that is scriptable. For online editing and sharing we will
work with the BRAIN funded Brain Image Library (BIL), and for interoperability with Neurodata Without
Borders (NWB) and Neuroscience Data Interface. We will utilize the BRAIN Initiative NeuroMorpho.Org
and Defining Our Research Methodology (DORY), to ensure our annotations of morphology, connectivity,
and physiological signatures include accepted meta-data nomenclatures and vocabularies.
We will work closely with a group of "seed" BRAIN funded labs to obtain feedback and make rapid
improvements in the functionality and usability of the front-end GUIs and the back-end API. This will be
achieved by online forums, site visits, and a hack-a-thon hosted at UC Davis. During the Covid pandemic we
have learned that these events work extremely well when done virtually and are prepared to continue this
model. We are committed to providing thorough documentation for the web-browser, desktop GUIs, and
Python API as well as constantly refined and simple to follow recipes with interactive web-based use cases. To
ensure community adoption and use, this proposal also includes working with a number of "seed" labs to run
their data through the entire pipeline from analysis to online sharing.
The long range goal is to have Map Manager act as a catalyst for data analysis, exploration, and sharing.
Effectively creating a community based approach, akin to other disciplines such as astronomy, where data is
widely and publicly shared allowing effective data mining and model building to advance new discoveries.
共聚焦,两光子和灯页显微镜的可用性和易于使用的易用性
荧光蛋白报道器的快速发展已经制造了3D和功能成像及其分析A
现代神经科学研究的中心部分。然而,获取3D和功能图像的便利性是
逐步创建更大的数据集,促使需要高通量图像分析算法和
可以既快速又准确的软件。尽管已收到了分析单个时间点图像的软件
目前缺乏分析多个时间点纵向成像数据集的大量关注。这
缺乏纵向图像分析工具是科学询问的主要障碍,个人实验室设计了他们
自己的分析策略创造了一种情况,使他人很难验证和复制此分析。
需要的是一个社区达成了促进共享的纵向图像分析标准。
在这里,我们建议开发软件,以在纵向成像数据集中创建和策划注释。
该软件将通过提供所需的严格性和可重复性,同时使其变得轻松,从而解决一个主要问题
供研究人员分发他们的数据和分析。使这些重要的数据集可找到,可访问,
可互操作,可重复使用。为了实现这些目标,我们建议建立直观的网络浏览器和桌面
将与基于云的数据和分析一起使用的图形 - 用户间隙(GUI)。这些Guis将被驱动
通过Python高级编程接口(API)。对于在线编辑和分享,我们将
与大脑资助的大脑图像库(BIL)一起工作,并与没有神经舞的互操作性
边界(NWB)和神经科学数据接口。我们将利用大脑倡议neuromorpho.org
并定义我们的研究方法(Dory),以确保我们对形态,连通性的注释
生理特征包括公认的元数据命名和词汇。
我们将与一组“种子”大脑资助的实验室紧密合作,以获得反馈并快速
前端GUI和后端API的功能和可用性的改善。这将是
通过在线论坛,现场访问和在加州大学戴维斯分校举办的骇人听闻的攻击。在COVID大流行期间
已经了解到,这些事件在虚拟完成后运作良好,并准备继续这样做
模型。我们致力于为网络浏览器,桌面GUI和
Python API以及不断完善且易于遵循与基于Web的用例的食谱。到
确保社区采用和使用,该建议还包括与许多“种子”实验室合作
他们的数据通过从分析到在线共享的整个管道。
远距离目标是让Map Manager作为数据分析,探索和共享的催化剂。
有效地创建一种基于社区的方法,类似于其他学科,例如天文学,数据是数据
广泛和公开共享,允许有效的数据挖掘和模型构建以推进新发现。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Harry Cudmore其他文献
Robert Harry Cudmore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
4D成像技术研究及其在龙门山断裂带介质演化中的应用
- 批准号:41674090
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Four-dimensional multi-modality microimaging-microdevice system for high throughput drug screening in vivo
用于高通量体内药物筛选的四维多模态显微成像-微器件系统
- 批准号:
10707307 - 财政年份:2022
- 资助金额:
$ 115.85万 - 项目类别:
Four-dimensional multi-modality microimaging-microdevice system for high throughput drug screening in vivo
用于高通量体内药物筛选的四维多模态显微成像-微器件系统
- 批准号:
10590171 - 财政年份:2022
- 资助金额:
$ 115.85万 - 项目类别:
Personalized Motion Management for Truly 4D Lung Radiotherapy
真正 4D 肺部放射治疗的个性化运动管理
- 批准号:
10452607 - 财政年份:2021
- 资助金额:
$ 115.85万 - 项目类别:
Enhanced Clinical Diagnosis through Imaging and Modeling: A Machine Learning Data Fusion Framework
通过成像和建模增强临床诊断:机器学习数据融合框架
- 批准号:
10483126 - 财政年份:2021
- 资助金额:
$ 115.85万 - 项目类别:
Enhanced Clinical Diagnosis through Imaging and Modeling: A Machine Learning Data Fusion Framework
通过成像和建模增强临床诊断:机器学习数据融合框架
- 批准号:
10287669 - 财政年份:2021
- 资助金额:
$ 115.85万 - 项目类别: