Frequency domain diffuse optical spectroscopy and diffuse correlation spectroscopy for assessing inspiratory muscle metabolism in mechanically ventilated patients

频域漫反射光谱和漫相关光谱用于评估机械通气患者的吸气肌代谢

基本信息

项目摘要

PROJECT SUMMARY Mechanical ventilation (MV), which is used to assist or replace spontaneous breathing in critically ill patients, led to $27 billion in expenditures in the US in 2010, accounting for 12% of all hospital costs. In that same year there were 2.7 episodes of MV per 1000 population, highlighting the enormous importance of this procedure. The COVID-19 pandemic has substantially increased these numbers, although precise rates are not yet available. MV is used, in part, to “unload”, or reduce the metabolic effort of respiratory muscles in order to redirect oxygen delivery to vital organs. As the patients’ conditions improve, key inspiratory muscles (e.g. diaphragm, scalenes, sternomastoid, etc.) need to take over spontaneous breathing independent of the ventilator. This “reloading” is precarious due to muscle disuse atrophy, induced by unloading. This is further complicated by other common conditions such as septic or cardiogenic shock, which can severely limit oxygen delivery independent of muscle status. What’s needed is a methodology that can continuously monitor blood flow and oxygen utilization of inspiratory muscles so that respiratory effort can be continuously optimized during MV. This project aims to develop a comprehensive blood flow index, oxygenation, and metabolic measurement platform for inspiratory muscle physiology by integrating wideband frequency-domain diffuse optical spectroscopy (wbDOS) and diffuse correlation spectroscopy (DCS) to tackle this unmet need. wbDOS is a new all-digital frequency-domain DOS technique that captures amplitude and phase measurements over a wide bandwidth of modulation frequencies (50-500 MHz) at high speeds (>100 Hz). wbDOS and DCS will combine synergistically to provide pathlength- corrected estimates of absolute Hb/Mb concentrations and blood flow index (BFi), allowing for the extraction of tissue regional oxygen metabolic rate (MRO2i), a parameter directly linked to oxygen utilization. We hypothesize that wbDOS and DCS measurements can be acquired simultaneously at high speed (>10 Hz) with parallel detection and integrated electronics. This speed is needed to capture inspiratory/expiratory dynamics at the respiratory rate. Additionally, we hypothesize wideband frequency-domain DOS measurements will provide improved quantification of optical properties, BFi and MRO2i when optically integrated with DCS as compared to single frequency FD-DOS or CW-NIRS. We will validate this through rigorous system testing using flow-channel tissue-mimicking optical phantoms. A multi-layer inverse model will be developed to better capture inspiratory muscle metabolism by accounting for subcutaneous lipid thickness and skin tones. We will also expand on our recent work in Deep Neural Network (DNN) processing to develop high-speed algorithms for calculating Hb/Mb concentrations, StO2 (%), BFi (mm2/s), and MRO2i at 10 Hz. We will conduct a feasibility study (n=10) of healthy volunteers during respiratory muscle loading and unloading to evaluate performance compared to expected trends. It is anticipated that completion of these aims will yield a novel and comprehensive blood flow index, oxygenation, and metabolic measurement platform (wbDOS-DCS) and lead to subsequent R01-scale funding.
项目摘要 机械通气(MV)用于协助或替代重症患者的赞助呼吸 2010年在美国的270亿美元支出占所有医院费用的12%。同年 是每1000个人口的MV 2.7次发作,强调了此程序的巨大重要性。 Covid-19大流行大大增加了这些数字,尽管尚未确切的速度。 MV部分用于“卸载”或减少呼吸肌肉的代谢努力以重定向氧气 交付至重要器官。随着患者状况的改善,关键的励志肌肉(例如,隔膜,鳞片,, 胸骨类药物等)需要接管独立于呼吸机的赞助呼吸。这种“重新加载”是 由于卸载引起的肌肉萎缩而导致的不稳定。这是其他常见的更复杂的 败血症或心源性休克等疾病,它们可以严重限制氧气递送独立于肌肉 地位。需要的方法是可以连续监测血流和氧气利用的方法 吸气肌肉,以便在MV期间可以连续优化呼吸系统。这个项目旨在 为灵感发展开发全面的血流指数,氧合和代谢测量平台 通过整合宽带频率域弥漫性光谱(WBDOS)和弥漫性来通过肌肉生理 相关光谱(DC)以应对这种未满足的需求。 WBDOS是一种新的全数字频域DOS 在调制频率的宽带宽度上捕获放大器和相测量的技术 (50-500 MHz)高速(> 100 Hz)。 WBDOS和DCS将结合协同结合以提供路径长度 - 对绝对HB/MB浓度和血流指数(BFI)的校正估计值,允许提取 组织区域氧代谢率(MRO2I),这是与氧利用直接相关的参数。我们假设 WBDOS和DCS测量可以与平行的高速(> 10 Hz)获取 检测和集成电子设备。需要此速度以捕获灵感/呼气动态 呼吸率。此外,我们假设宽带频域DOS测量将提供 与DC光学整合时,相比 单频FD-DOS或CW-NIR。我们将通过使用流通道进行严格的系统测试来验证这一点 模拟组织的光学幻像。将开发多层逆模型以更好地捕捉灵感 通过考虑皮下脂质厚度和肤色的肌肉代谢。我们还将扩大我们的 深度神经网络(DNN)处理的最新工作,以开发用于计算HB/MB的高速算法 浓度为sto2(%),BFI(MM2/s)和MRO2I,为10 Hz。我们将进行健康的可行性研究(n = 10) 与预期相比 趋势。预计这些目标的完成将产生一种新颖而全面的血流指数, 氧合和代谢测量平台(WBDOS-DC),并导致随后的R01尺度资金。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darren Michael Roblyer其他文献

Darren Michael Roblyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darren Michael Roblyer', 18)}}的其他基金

Frequency domain diffuse optical spectroscopy and diffuse correlation spectroscopy for assessing inspiratory muscle metabolism in mechanically ventilated patients
频域漫反射光谱和漫相关光谱用于评估机械通气患者的吸气肌代谢
  • 批准号:
    10482330
  • 财政年份:
    2021
  • 资助金额:
    $ 21.5万
  • 项目类别:
Label-free measurement of blood lipids with hyperspectral short-wave infrared spatial frequency domain imaging to improve cardiovascular disease risk prediction and treatment monitoring
利用高光谱短波红外空间频域成像对血脂进行无标记测量,以改善心血管疾病风险预测和治疗监测
  • 批准号:
    10042318
  • 财政年份:
    2020
  • 资助金额:
    $ 21.5万
  • 项目类别:
Label-free measurement of blood lipids with hyperspectral short-wave infrared spatial frequency domain imaging to improve cardiovascular disease risk prediction and treatment monitoring
利用高光谱短波红外空间频域成像对血脂进行无标记测量,以改善心血管疾病风险预测和治疗监测
  • 批准号:
    10178014
  • 财政年份:
    2020
  • 资助金额:
    $ 21.5万
  • 项目类别:
Label-free measurement of blood lipids with hyperspectral short-wave infrared spatial frequency domain imaging to improve cardiovascular disease risk prediction and treatment monitoring
利用高光谱短波红外空间频域成像对血脂进行无标记测量,以改善心血管疾病风险预测和治疗监测
  • 批准号:
    10377511
  • 财政年份:
    2020
  • 资助金额:
    $ 21.5万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了